169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Detonation Re-initiation behind an Aluminum Foam Plate in Stoichiometric Methane-oxygen Mixture

, , &
Pages 2836-2846 | Received 08 Sep 2020, Accepted 18 Feb 2021, Published online: 08 Mar 2021

References

  • Ahumada, C. B., Q. Wang, and E. L. Petersen. 2020. Effects of unequal blockage ratio and obstacle spacing on wave speed and overpressure during flame propagation in stoichiometric H2/O2. Shock Waves 30: 1–13.
  • Carnasciali, F., J. H. S. Lee, R. Knystautas, F. Fineschi. 1991. Turbulent jet initiation of detonation. Combust. Flame. 84(1–2):170–80. doi:10.1016/0010-2180(91)90046-E.
  • Ciccarelli, G., and M. Cross. 2016. On the propagation mechanism of a detonation wave in a round tube with orifice plates. Shock Waves 26 (5):587–97. doi:10.1007/s00193-016-0676-6.
  • Chao, J., and J. H. S. Lee. 2005. The interaction of a detonation with a perforated plate.Shock waves, 763–68. Berlin, Heidelberg: Springer.
  • Fan, Z., B. Zhang, Y. Gao, X. Guan, P. Xu. 2018. Deformation mechanisms of spherical cell porous aluminum under quasi-static compression. Scr. Mater 142:32–35. doi:10.1016/j.scriptamat.2017.08.019.
  • Fay, J. A. 1959. Two‐dimensional gaseous detonations: Velocity deficit. Phys. Fluids 2 (3):283–89. doi:10.1063/1.1705924.
  • Guo, C., G. Thomas, J. Li, D. Zhang. 2002. Experimental study of gaseous detonation propagation over acoustically absorbing walls. Shock Waves. 11(5):353–59. doi:10.1007/s001930100113.
  • Inada, M., J. H. Lee, and R. Knystautas. 1993. Photographic study of the direct initiation of detonation by a turbulent jet. Prog Astronaut. Aeronaut. 153:253–253.
  • Kellenberger, M., and G. Ciccarelli. 2015. Investigation of quasi-detonation propagation using simultaneous soot foil and schlieren photography. Int. Colloq. Dyn. Explos. React. Syst. Leeds.
  • Khokhlov, K. M., and E. S. Oran. 1999. Numerical simulation of detonation initiation in a flame brush: The role of hot spots. Combust. Flame 119 (4):400–16. doi:10.1016/S0010-2180(99)00058-9.
  • Khomik, S. V., B. Veyssiere, S. P. Medvedev, V. Montassier, G. L. Agafonov, M. V. Silnikov. 2013. On some conditions for detonation initiation downstream of a perforated plate. Shock Waves. 23(3):207–11. doi:10.1007/s00193-012-0409-4.
  • Khomik, S. V., B. Veyssiere, M. S P, V. Montassier, H. Olivier. 2012. Limits and mechanism of detonation re-initiation behind a multi-orifice plate. Shock Waves. 22(3):199–205. doi:10.1007/s00193-012-0358-y.
  • Knystautas, R., L. J H, I. Moen, H. G. Wagner. 1979. Direct initiation of spherical detonation by a hot turbulent gas jet. Symp. (Int.) Combust. Elsevier. 17(1):1235–45. doi:10.1016/S0082-0784(79)80117-4.
  • McBride, B. J., and S. Gordon. 1996. Computer program for calculation of complex chemical equilibrium compositions and applications II. users manual and program description. 2; users manual and program description.
  • Medvedev, S. P., S. V. Khomik, and B. E. Gel’fand. 2009. Recovery and suppression of the detonation of hydrogen-air mixtures at an obstacle with orifices. Russ. J. Phys. Chem. B 3 (6):963–70. doi:10.1134/S1990793109060165.
  • Nie, B., X. He, R. Zhang, W. Chen, J. Zhang. 2011. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. J. Hazard. Mater. 192(2):741–47. doi:10.1016/j.jhazmat.2011.05.083.
  • Nie, B., L. Yang, and J. Wang. 2016. Experiments and mechanisms of gas explosion suppression with foam ceramics. Combust. Sci. Technol. 188 (11–12):2117–27. doi:10.1080/00102202.2016.1218161.
  • Radulescu, M. I., and J. H. S. Lee. 2002. The failure mechanism of gaseous detonations: Experiments in porous wall tubes. Combust. Flame 131 (1–2):29–46. doi:10.1016/S0010-2180(02)00390-5.
  • Soloukhin, R. I. 1974. Ignition and detonation processes in the interaction of shock waves with perforated plates. Acta Astronaut. 1 (3–4):249–58. doi:10.1016/0094-5765(74)90096-4.
  • Teodorczyk, A., and J. H. S. Lee. 1995. Detonation attenuation by foams and wire meshes lining the walls. Shock Waves 4 (4):225–36. doi:10.1007/BF01414988.
  • Vasil’Ev, A. A. 1994. Near-limiting detonation in channels with porous walls. Combust. Explos. Shock Waves 30 (1):101–06. doi:10.1007/BF00787892.
  • Wang, L., H. Ma, and Z. Shen. 2016. The quenching of propane deflagrations by crimped ribbon flame arrestors. J. Loss Prev. Process Ind. 43:567–74. doi:10.1016/j.jlp.2016.07.025.
  • Wang, L. Q., M. H H, D. Y X, Z.-W. Shen. 2019. On the detonation behavior of methane-oxygen in a round tube filled with orifice plates. Process Saf. Environ. Prot. 121:263–70. doi:10.1016/j.psep.2018.11.002.
  • Wang, L., H. Ma, Z. Shen, Z. Fan. 2018a. Detonation characteristics of stoichiometric H2–O2 diluted with Ar/N2 in smooth and porous tubes. Exp. Therm. Fluid Sci. 91:345–53. doi:10.1016/j.expthermflusci.2017.08.021.
  • Wang, L. Q., M. H H, Z. W. Shen, Y.-F. Cheng, D.-G. Chen. 2018b. Detonation behaviors of syngas-oxygen in round and square tubes. Int. J. Hydrogen Energy. 43(31):14775–86. doi:10.1016/j.ijhydene.2018.05.163.
  • Wang, L., H. Ma, Z. Shen, B. Xue, Y. Cheng, Z. Fan. 2017. Experimental investigation of methane-oxygen detonation propagation in tubes. Appl. Therm. Eng. 123:1300–07. doi:10.1016/j.applthermaleng.2017.05.045.
  • Zhang, B., H. Liu, and B. Yan. 2019. Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane–oxygen mixture. Fuel 236:975–83.
  • Zhang, B., L. Pang, and Y. Gao. 2016a. Detonation limits in binary fuel blends of methane/hydrogen mixtures. Fuel 168:27–33. doi:10.1016/j.fuel.2015.11.073.
  • Zhang, B., X. Shen, L. Pang, Y. Gao. 2016b. Methane–oxygen detonation characteristics near their propagation limits in ducts. Fuel 177:1–7. doi:10.1016/j.fuel.2016.02.089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.