343
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Dependence of Soot Primary Particle Size on the Height above a Burner in Target Ethylene/air Premixed Flame

, , & ORCID Icon
Pages 2847-2863 | Received 12 Aug 2020, Accepted 19 Feb 2021, Published online: 04 Mar 2021

References

  • Axelsson, B., R. Collin, and P. ‐. E. Bengtsson. 2000. Laser-induced incandescence for soot particle size measurements in premixed flat flames. Appl. Opt 39 (21):3683. doi:10.1364/AO.39.003683.
  • Bauer, F. J., K. J. Daun, F. J. T. Huber, and S. Will. 2013. Can soot primary particle size distributions be determined using laser‑induced incandescence? Appl. Phys. B 125 (6):109. doi:10.1007/s00340-019-7219-7.
  • Betrancourt, C., X. Mercier, F. Liu, and P. Desgroux. 2019. Quantitative measurement of volume fraction profiles of soot of different maturities in premixed flames by extinction-calibrated laser-induced incandescence. Appl. Phys. B 125 (1):16. doi:10.1007/s00340-018-7127-2.
  • Bladh, H., N.-E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P.-E. Bengtsson, and P. Desgroux. 2015. Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence. Proc. Combust. Inst. 35 (2):1843. doi:10.1016/j.proci.2014.06.001.
  • Brackmann, C., J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz. 2002. Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames. Appl. Opt. 41 (3):564. doi:10.1364/AO.41.000564.
  • Bradley, D., and K. J. Matthews. 1968. Measurement of high gas temperature with fine wire thermocouples. J. Mech. Eng. Sci. 10 (4):299. doi:10.1243/JMES_JOUR_1968_010_048_02.
  • Chase, M. W., C. A. Davies, J. R. Downey, et al. 1985. JANAF thermochemical tables, third edition. J. Phys. Chem. Ref. Data. 14 (Suppl. 1):536.
  • Crosland, B. M., K. A. Thomson, and M. R. Johnson. 2013. Instantaneous in-flame measurement of soot volume fraction, primary particle diameter, and aggregate radius of gyration via auto-compensating laser-induced incandescence and two-angle elastic light scattering. Appl. Phys. B 112 (3):381. doi:10.1007/s00340-013-5539-6.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2015. OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun. 192:237. doi:10.1016/j.cpc.2015.02.014.
  • De Iuliis, S., S. Maffi, F. Cignoli, and G. Zizak. 2011. Three-angle scattering/extinction versus TEM measurements on soot in premixed ethylene/air flame. Appl. Phys. B 102 (4):891. doi:10.1007/s00340-010-4344-8.
  • De Iuliis, S., S. Maffi, F. Migliorini, F. Cignoli, and G. Zizak. 2012. Effect of hydrogen addition on soot formation in an ethylene/air premixed flame. Appl. Phys. B 106 (3):707. doi:10.1007/s00340-012-4903-2.
  • Dobbins, R. A., and C. M. Megaridis. 1987. Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3 (2):254. doi:10.1021/la00074a019.
  • Egoifopoulos, F. N., and P. E. Dimotakis. 2001. A comparative numerical study of premixed and non-premixed ethylene flames. Comb. Sci. Tech 162 (1):19. doi:10.1080/00102200108952135.
  • Eremin, A., E. Gurentsov, Е. Popova, and K. Priemchenko. 2011. Size dependence of refractive index function of small particles. Appl. Phys. B 104 (2):285. doi:10.1007/s00340-011-4420-8.
  • Eremin, A. V., E. V. Gurentsov, and R. N. Kolotushkin. 2020. The change of soot refractive index function along the height of premixed ethylene/air flame and its correlation with soot structure. Appl. Phys. B 126 (8):125. doi:10.1007/s00340-020-07426-3.
  • Eremin, A. V., E. V. Gurentsov, and S. A. Musikhin. 2017. Temperature influence on the properties of carbon-encapsulated iron nanoparticles forming in pyrolysis of gaseous precursors. J. Alloys Compounds 727:711. doi:10.1016/j.jallcom.2017.08.155.
  • Goulay, F., L. Nemes, P. E. Schrader, and H. A. Michelsen. 2010. Spontaneous emission from C2(d3Πg) and C3(A1Πu) during laser irradiation of soot particles. Mol Phys 108 (7–9):1013. doi:10.1080/00268971003627824.
  • Gurentsov, E. V., and A. V. Eremin. 2011. Size measurement of carbon and iron nanoparticles by laser induced incandescence. High Temperature 49 (5):667. doi:10.1134/S0018151X11050087.
  • ISF-2019, University of Adelaide (https://www.adelaide.edu.au/cet/isfworkshop/data-sets/laminar-flames#isf-4-premixed-flames-3-mckenna-burner-stabilised-flames-lii-target-flames).
  • Jain, A., Y. Wang, and W. D. Kulatilaka. 2019. Effect of H-atom concentration on soot formation in premixed ethylene/air flames. Proc. Combust. Inst. 37 (2):1289. doi:10.1016/j.proci.2018.07.093.
  • Kempema, N. J., and M. B. Long. 2016. Combined optical and TEM investigations for a detailed characterization of soot aggregate properties in a laminar coflow diffusion flame. Combust. Flame 164:373. doi:10.1016/j.combustflame.2015.12.001.
  • Köylü, O., C. S. McEnally, D. E. Rosen, and L. D. Pfefferle. 1997. Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique. Combust. Flame 110 (4):494. doi:10.1016/S0010-2180(97)00089-8.
  • Lee, J., I. Altman, and M. Choi. 2008. Design of thermophoretic probe for precise particle sampling. Journal of Aerosol Science 39 (5):418. doi:10.1016/j.jaerosci.2008.01.001.
  • Leschowski, M., T. Dreier, and C. Schulz. 2014. An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames. Rev. Sci. Instrum. 85 (4):045103. doi:10.1063/1.4868970.
  • Michelsen, H. A. 2003. Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118 (15):7012. doi:10.1063/1.1559483.
  • Michelsen, H. A., F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, et al. 2007. Modeling laser-induced incandescence of soot: A summary and comparison of LII models. Appl. Phys. B 87 (3):503. doi:10.1007/s00340-007-2619-5.
  • Michelsen, H. A., C. Schulz, G. J. Smallwood, and S. Will. 2015. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51:2.
  • Migliorini, F., S. De Iuliis, F. Cignoli, and G. Zizak. 2008. How “flat” is the rich premixed flame produced by your McKenna burner? Combust. Flame 153 (3):384. doi:10.1016/j.combustflame.2008.01.007.
  • Olofsson, N.-E., H. Bladh, A. Bohlin, J. Johnsson, and P.-E. Bengtsson. 2013. Are sooting premixed porous-plug burner flames one-dimensional? A laser-based experimental investigation. Combust. Sci. Technol. 185 (2):293. doi:10.1080/00102202.2012.718006.
  • Peukert, S., A. Sallom, A. Emelianov, T. Endres, M. Fikri, H. Böhm, H. Jander, A. Eremin, and C. Schulz. 2019. The influence of hydrogen and methane on the growth of carbon particles during acetylene pyrolysis in a burnt-gas flow reactor. Proc. Combust. Inst. 37 (1):1125. doi:10.1016/j.proci.2018.05.049.
  • Senser, D. W., J. S. Morse, and V. A. Cundy. 1985. Construction and novel application of a flat flame burner facility to study hazardous waste combustion. Rev. Sci. Instrum. 56 (6):1279. doi:10.1063/1.1137992.
  • Starke, R., B. Kock, and P. Roth. 2003. Nano-particle sizing by laser-induced-incandescence (LII) in a shock wave reactor. Shock Waves 12 (5):351. doi:10.1007/s00193-003-0178-1.
  • Wang, H., A. Laskin, Z. M. Djurisic, C. K. Law, S. G. Davis, and D. L. Zhu. 1999. A comprehensive mechanism of C2Hx and C3Hx fuel combustion. Chemical and physical processes of combustion, the 1999 Fall Technical Meeting of the Eastern States Section of the Combustion Institute: Raleigh, NC. 129–32. October, 1999. Available at: http://ignis.usc.edu/Mechanisms/C2-C4/c2.html
  • Xu, F., P. B. Sunderland, and G. M. Faeth. 1997. Soot formation in laminar premixed ethylene/air flames at atmospheric pressure. Combust. Flame 108 (4):471. doi:10.1016/S0010-2180(96)00200-3.
  • Xu, Z., H. Zhao, X. Chen, and C. Lou. 2017. Multi-parameter measurements of laminar sooting flames using thermophoretic sampling technique. Combust. Flame 180:158. doi:10.1016/j.combustflame.2017.03.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.