247
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on the Characteristics of the Spontaneous Combustion of Coal at High Ground Temperatures

, , , &
Pages 2880-2893 | Received 06 Nov 2020, Accepted 22 Feb 2021, Published online: 07 Mar 2021

References

  • Bhoi, S., T. Banerjee, and K. Mohanty. 2014. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF. Fuel 136:326–33. doi:10.1016/j.fuel.2014.07.058.
  • Deng, J., Y. Xiao, Q. Li, J. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Saf. Environ. Prot. 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Di, J. Y., E. X. Gao, X. L. Sun, C. Q. Sun, and Y. L. Chen. 2014. Study on the relation between the deep and the spontaneous combustion of coal seam. Adv. Mater. Res. 852:821–25. d oi:1 0.4028/w ww.scientific.net/AMR.852.821.
  • Guo, J., H. Wen, X. Zheng, Y. Liu, and X. Cheng. 2019a. A method for evaluating the spontaneous combustion of coal by monitoring various gases. Process Saf. Environ. Prot. 126:223–31. doi:10.1016/j.psep.2019.04.014.
  • Guo, Q., W. Ren, and W. Lu. 2020. A method for predicting coal temperature using CO with GA-SVR model for early warning of the spontaneous combustion of coal. Combust. Sci. Technol. 1–16.
  • Guo, Q., W. Ren, J. Zhu, and J. Shi. 2019b. Study on the composition and structure of foamed gel for fire prevention and extinguishing in coal mines. Process Saf. Environ. Prot. 128:176–83. doi:10.1016/j.psep.2019.06.001.
  • Huang, Z., J. Li, Y. Gao, Z. Shao, Y. Zhang, and Y. Wang. 2020. Thermal behavior and characteristics of functional groups on lignite secondary oxidation. Combust. Sci. Technol. 1–18.
  • Li, B., G. Chen, H. Zhang, and C. Sheng. 2014. Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel 118:385–91. doi:10.1016/j.fuel.2013.11.011.
  • Li, J., Z. Li, Y. Yang, Y. Duan, J. Xu, and R. Gao. 2019. Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures. Energy 185:28–38. doi:10.1016/j.energy.2019.07.041.
  • Liao, J., Y. Fei, M. Marshall, A. L. Chaffee, and L. Chang. 2016. Hydrothermal dewatering of a Chinese lignite and properties of the solid products. Fuel 180:473–80. doi:10.1016/j.fuel.2016.04.027.
  • Liu, S. 2014. Experimental study on coal spontaneous combustion characteristics of the initial temperature effects. Master. Xi’an University of Science and Technology. (in Chinese).
  • Lu, W., and Q. Hu. 2007. Relation between the change rules of coal structures when being oxidized and spontaneous combustion process of coal. J. China Coal Soc. 939–44. (in Chinese).
  • Mohalik, N. K., D. C. Panigrahi, and V. K. Singh. 2009. Application of thermal analysis techniques to assess proneness of coal to spontaneous heating. J. Therm. Anal. Calorim. 98:507–19. doi:10.1007/s10973-009-0305-z.
  • Onifade, M., and B. Genc. 2018. Spontaneous combustion of coals and coal-shales. Int. J. Min. Sci. Technol. 28:933–40. doi:10.1016/j.ijmst.2018.05.013.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: A thermogravimetric study. Int. J. Min. Sci. Technol. 30:691–98. doi:10.1016/j.ijmst.2020.03.006.
  • Ren, L.-F., J. Deng, Q.-W. Li, L. Ma, L. Zou, B. Laiwang, and C.-M. Shu. 2019. Low-temperature exothermic oxidation characteristics and spontaneous combustion risk of pulverised coal. Fuel 252:238–45. doi:10.1016/j.fuel.2019.04.108.
  • Slovak, V., and B. Taraba. 2010. Effect of experimental conditions on parameters derived from TG-DSC measurements of low-temperature oxidation of coal. J. Therm. Anal. Calorim. 101:641–46. doi:10.1007/s10973-010-0878-6.
  • Tahmasebi, A., J. Yu, Y. Han, and X. Li. 2012. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air. Fuel Process. Technol. 101:85–93. doi:10.1016/j.fuproc.2012.04.005.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wen, H., H. Wang, W. Liu, and X. Cheng. 2020. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion. Fuel 275.
  • Xie, J., S. Xue, W. Cheng, and G. Wang. 2011. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system. Int. J. Coal Geol. 85:123–27. doi:10.1016/j.coal.2010.10.007.
  • Xin, H., D. Wang, X. Qi, G. Qi, and G. Dou. 2014. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Process. Technol. 118:287–95. doi:10.1016/j.fuproc.2013.09.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.