363
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Competing Contributions of Structural, Acoustic, and Intrinsic Modes to Thermoacoustic Oscillations

, , &
Pages 2894-2915 | Received 18 Sep 2020, Accepted 25 Feb 2021, Published online: 22 Apr 2021

References

  • Albayrak, A., T. Steinbacher, T. Komarek, and W. Polifke. 2018. Convective scaling of intrinsic thermo-acoustic eigenfrequencies of a premixed swirl combustor. ASME J. Eng. Gas Turbines Power 140 (4):41–51. doi:10.1115/1.4038083.
  • Alster, M. 1972. Improved calculation of resonant frequencies of Helmholtz resonators. J. Sound Vib. 24 (1):63–85. doi:10.1016/0022-460X(72)90123-X.
  • Balachandran, R., B. O. Ayoola, C. F. Kaminski, A. P. Dowling, and E. Mastorakos. 2005. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143 (1–2):37–55. doi:10.1016/j.combustflame.2005.04.009.
  • Bonciolini, G., and N. Noiray. 2019. Synchronization of thermoacoustic modes in sequential combustors. ASME J. Eng. Gas Turbines Power 141 (3):031010. doi:10.1115/1.4041027.
  • Candel, S., D. Durox, and T. Schuller 2004. Flame interactions as a source of noise and combustion instabilities. In 10th AIAA/CEAS Aeroacoustics Conference, 2928, Manchester, UK.
  • Candel, S. M. 1992. Combustion instabilities coupled by pressure waves and their active control. Proc. Combust. Inst. 24: 1277–96.
  • Casado, J. C. R. 2013. Nonlinear behavior of the thermoacoustic instabilities in the limousine combustor. PhD thesis, University of Twente, The Netherlands.
  • Chakravarthy, S. R., O. J. Shreenivasan, B. Boehm, A. Dreizler, and J. Janicka. 2007. Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor. J. Acoust. Soc. Am. 122 (1):120–27. doi:10.1121/1.2741374.
  • Chigier, N. A., and J. M. Beér. 1964. Velocity and static-pressure distributions in swirling air jets issuing from annular and divergent nozzles. J. Basic Eng. 86 (4):788–96. doi:10.1115/1.3655954.
  • Cirtwill, J. D. M., S. Kheirkhah, P. Saini, K. Venkatesan, and A. M. Steinberg 2017. Analysis of intermittent thermoacoustic oscillations in an aeronautical gas turbine combustor. In 55th AIAA Aerospace Sciences Meeting, Grapevine, USA, 0824.
  • Courtine, E., L. Selle, F. Nicoud, W. Polifke, C. Silva, M. Bauerheim, and T. Poinsot. 2014. Causality and intrinsic thermoacoustic instability modes. In Proceedings of Stanford Center for Turbulence Research, 169–78.
  • Courtine, E., L. Selle, and T. Poinsot. 2015. DNS of intrinsic thermoacoustic modes in laminar premixed flames. Combust. Flame 162 (11):4331–41. doi:10.1016/j.combustflame.2015.07.002.
  • Durox, D., T. Schuller, N. Noiray, A. L. Birbaud, and S. Candel. 2009. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames. Combust. Flame 156 (1):106–19. doi:10.1016/j.combustflame.2008.07.016.
  • Emmert, T., S. Bomberg, S. Jaensch, and W. Polifke. 2017. Acoustic and intrinsic thermoacoustic modes of a premixed combustor. Proc. Combust. Inst. 36 (3):3835–42. doi:10.1016/j.proci.2016.08.002.
  • Emmert, T., S. Bomberg, and W. Polifke. 2015. Intrinsic thermoacoustic instability of premixed flames. Combust. Flame 162 (1):75–85. doi:10.1016/j.combustflame.2014.06.008.
  • Fritsche, D., M. Füri, and K. Boulouchos. 2007. An experimental investigation of thermoacoustic instabilities in a premixed swirl-stabilized flame. Combust. Flame 151 (1–2):29–36. doi:10.1016/j.combustflame.2007.05.012.
  • Gotoda, H., H. Nikimoto, T. Miyano, and S. Tachibana. 2011. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos Interdiscip. J. Nonlinear Sci. 21 (1):013124. doi:10.1063/1.3563577.
  • Hardalupas, Y. L., and M. Orain. 2004. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust. Flame 139 (3):188–207. doi:10.1016/j.combustflame.2004.08.003.
  • Heydarlaki, R., W. Aitchison, P. Kostka, and S. Kheirkhah. 2019. Influences of initial and transient combustor wall-temperature on thermoacoustic oscillations of a small-scale power generator. Exp. Therm Fluid Sci. 109:109856. doi:10.1016/j.expthermflusci.2019.109856.
  • Hoeijmakers, M., V. Kornilov, I. L. Arteaga, L. P. H. de Goey, and H. Nijmeijer. 2014. Intrinsic instability of flame–acoustic coupling. Combust. Flame 161 (11):2860–67. doi:10.1016/j.combustflame.2014.05.009.
  • Hoeijmakers, M., V. Kornilov, I. L. Arteaga, L. P. H. de Goey, and H. Nijmeijer. 2016. Flame dominated thermoacoustic instabilities in a system with high acoustic losses. Combust. Flame 169:209–15. doi:10.1016/j.combustflame.2016.03.009.
  • Hong, S., S. J. Shanbhogue, R. L. Speth, and A. F. Ghoniem. 2013. On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions. Combust. Flame 160 (12):2827–42. doi:10.1016/j.combustflame.2013.07.001.
  • Hosseini, N., V. N. Kornilov, I. L. Arteaga, W. Polifke, O. J. Teerling, and L. P. H. de Goey. 2018. Intrinsic thermoacoustic modes and their interplay with acoustic modes in a Rijke burner. Int. J. Spray Combust. Dyn. 10 (4):315–25. doi:10.1177/1756827718782884.
  • Huang, Y., and A. Ratner. 2009. Experimental investigation of thermoacoustic coupling for low-swirl lean premixed flames. AIAA J. Propul. Power 25 (2):365–73. doi:10.2514/1.36310.
  • Ingard, U. 1953. On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25 (6):1037–61. doi:10.1121/1.1907235.
  • Kabiraj, L., and R. I. Sujith. 2012. Nonlinear self-excited thermoacoustic oscillations: Intermittency and flame blowout. J Fluid Mech 713:376–97. doi:10.1017/jfm.2012.463.
  • Kang, D. M., F. E. C. Culick, and A. Ratner. 2007. Combustion dynamics of a low-swirl combustor. Combust. Flame 151 (3):412–25. doi:10.1016/j.combustflame.2007.07.017.
  • Kheirkhah, S., B. D. Geraedts, P. Saini, K. Venkatesan, and A. M. Steinberg. 2017b. Non-stationary local thermoacoustic phase relationships in a gas turbine combustor. Proc. Combust. Inst. 36 (3):3873–80. doi:10.1016/j.proci.2016.08.032.
  • Kheirkhah, S., J. D. M. Cirtwill, P. Saini, K. Venkatesan, and A. M. Steinberg. 2017a. Dynamics and mechanisms of pressure, heat release rate, and fuel spray coupling during intermittent thermoacoustic oscillations in a model aeronautical combustor at elevated pressure. Combust. Flame 185:319–34. doi:10.1016/j.combustflame.2017.07.017.
  • Kheirkhah, S., and Ö. L. Gülder. 2013. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front. Phys. Fluids 25 (5):055107. doi:10.1063/1.4807073.
  • Kheirkhah, S., and Ö. L. Gülder. 2014. Influence of edge velocity on flame front position and displacement speed in turbulent premixed combustion. Combust. Flame 161 (10):2614–26. doi:10.1016/j.combustflame.2014.04.008.
  • Kheirkhah, S., and Ö. L. Gülder. 2015. Consumption speed and burning velocity in counter-gradient and gradient diffusion regimes of turbulent premixed combustion. Combust. Flame 162 (4):1422–39. doi:10.1016/j.combustflame.2014.11.009.
  • Lauer, M., and T. Sattelmayer. 2010. On the adequacy of chemiluminescence as a measure for heat release in turbulent flames with mixture gradients. ASME J. Eng. Gas Turbines Power 132 (6):061502. doi:10.1115/1.4000126.
  • Lee, S.-Y., S. Seo, J. C. Broda, S. Pal, and R. J. Santoro. 2000. An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor. Proc. Combust. Inst. 28 (1):775–82. doi:10.1016/S0082-0784(00)80280-5.
  • Li, X., Y. Wang, N. Wang, and D. Zhao. 2020. Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise. J. Sound Vib. 480:115423. doi:10.1016/j.jsv.2020.115423.
  • Lieuwen, T. C., and V. Yang. 2005. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling. American Institute of Aeronautics and Astronautics.
  • Mahesh, S., R. Gopakumar, B. V. Rahul, A. K. Dutta, S. Mondal, and S. Chaudhuri. 2018. Instability Control by Actuating the Swirler in a Lean Premixed Combustor. AIAA J. Propul. Power 86 (4):788–96. doi:10.2514/1.B36366.
  • Murugesan, M., B. Singaravelu, A. K. Kushwaha, and S. Mariappan. 2018. Onset of flame-intrinsic thermoacoustic instabilities in partially premixed turbulent combustors. Int. J. Spray Combust. Dyn. 10 (3):171–84. doi:10.1177/1756827718758511.
  • Nair, V., G. Thampi, and R. I. Sujith. 2014. Intermittency route to thermoacoustic instability in turbulent combustors. J Fluid Mech 756:470–87. doi:10.1017/jfm.2014.468.
  • Orchini, A., C. F. Silva, G. A. Mensah, and J. P. Moeck. 2020. Thermoacoustic modes of intrinsic and acoustic origin and their interplay with exceptional points. Combust. Flame 211:83–95. doi:10.1016/j.combustflame.2019.09.018.
  • Passarelli, M. L. 2019. An investigation of cross-frequency interactions in a gas turbine combustor at flight-relevant conditions. Master’s thesis, University of Toronto, Canada.
  • Pawar, S. A., S. Mondal, N. B. George, and R. I. Sujith. 2019. Temporal and spatiotemporal analyses of synchronization transition in a swirl-stabilized combustor. AIAA J. 57 (2):836–47. doi:10.2514/1.J057143.
  • Rienstra, S. W., and A. Hirschberg 2004. An introduction to acoustics (Report no. IWDE 92-06). Technical Report.
  • Roberts, W. L., and J. F. Driscoll. 1991. A laminar vortex interacting with a premixed flame: Measured formation of pockets of reactants. Combust. Flame 87 (3–4):245–56. doi:10.1016/0010-2180(91)90111-N.
  • Samaniego, J. M., B. Yip, T. Poinsot, and S. Candel. 1993. Low-frequency combustion instability mechanisms in a side-dump combustor. Combust. Flame 94 (4):363–80. doi:10.1016/0010-2180(93)90120-R.
  • Schuller, T. 2003. Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135 (4):525–37. doi:10.1016/j.combustflame.2003.08.007.
  • Shahi, M., J. B. W. Kok, J. C. R. Casado, and A. K. Pozarlik. 2018. Strongly coupled fluid–structure interaction in a three-dimensional model combustor during limit cycle oscillations. ASME J. Eng. Gas Turbines Power 140 (6):061505. doi:10.1115/1.4038234.
  • Shreekrishna, V. Acharya, and T. Lieuwen. 2013. Flame response to equivalence ratio fluctuations — relationship between chemiluminescence and heat release. Int. J. Spray Combust. Dyn. 5 (4):329–58. doi:10.1260/1756-8277.5.4.329.
  • Tay-Wo-Chong, L., S. Bomberg, A. Ulhaq, T. Komarek, and W. Polifke. 2012. Comparative validation study on identification of premixed flame transfer function. ASME J. Eng. Gas Turbines Power 134 (2):2. doi:10.1115/1.4004183.
  • Temme, J. E., P. M. Allison, and J. F. Driscoll. 2014. Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV. Combust. Flame 161 (4):958–70. doi:10.1016/j.combustflame.2013.09.021.
  • Xu, L., J. Zheng, G. Wang, Z. Feng, X. Tian, L. Li, and F. Qi 2020. Investigation on the intrinsic thermoacoustic instability of a lean-premixed swirl combustor with an acoustic liner. Proc. Combust. Inst. 000: 1–9.
  • Zhang, Y., C. Wang, X. Liu, and D. Che. 2019. Numerical study of the self-excited thermoacoustic vibrations occurring in combustion system. Appl. Therm. Eng. 160:113994. doi:10.1016/j.applthermaleng.2019.113994.
  • Zhao, H., G. Li, D. Zhao, Z. Zhang, D. Sun, W. Yang, S. Li, Z. Lu, and Y. Zheng. 2017. Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor. Appl. Energy 208:123–31. doi:10.1016/j.apenergy.2017.10.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.