132
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Key Parameters of Preventing Spontaneous Combustion of Coal Stockpile Based on Heat Transfer Technology by a Heat Pipe

ORCID Icon, , , ORCID Icon, , & show all
Pages 2916-2932 | Received 16 Dec 2020, Accepted 24 Feb 2021, Published online: 10 Mar 2021

References

  • Agrawal, V., B. K. Panigrahi, and P. M. V. Subbarao. 2015. Review of control and fault diagnosis methods applied to coal mills. J. Process Control 32:138–53. doi:10.1016/j.jprocont.2015.04.006.
  • Bai, Z. J., C. P. Wang, J. Deng, F. R. Kang, and C. M. Shu. 2020. Experimental investigation on using ionic liquid to control spontaneous combustion of lignite. Process. Saf. Environ. 142:138–49. doi:10.1016/j.psep.2020.06.017.
  • Brooks, K., N. Svanas, and D. Glasser. 1988. Evaluating the risk of spontaneous combustion in coal stockpiles. Fuel 67:651–56. doi:10.1016/0016-2361(88)90293-1.
  • Chen, X. K., T. Ma, X. W. Zhai, C. K. Lei, and B. B. Song. 2019. Spontaneous combustion characteristics of coal by using the simultaneous thermal analysis-fourier transform infrared spectroscopy technique. Combust. Sci. Technol. 11:1–20. doi:10.1080/00102202.2019.1679124.
  • Cheng, F. M., Z. C. Chang, J. Deng, F. Nan, A. B. Zhang, and B. Li. 2020. Numerical evaluation of inclined heat pipes on suppressing spontaneous coal combustion. Heat Mass Transfer 56:1–14. doi:10.1007/s00231-020-02819-8.
  • Chu, R. Z., M. L. Wang, X. L. Meng, and P. Liu. 2019. Numerical simulation and application experiment of spontaneous combustion tendency of coal stockpile covered with pulverized coal. Can. J. Chem. Eng. 98:616–24. doi:10.1002/cjce.23643.
  • Deng, J., Y. Xiao, Q. W. Li, J. H. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Fan, Y. J., Y. Y. Zhao, X. M. Hu, M. Y. Wu, and D. Xue. 2020. A novel fire prevention and control plastogel to inhibit spontaneous combustion of coal: Its characteristics and engineering applications. Fuel 263:116693. doi:10.1016/j.fuel.2019.116693.
  • Huang, J. X., G. Xu, G. Z. Hu, M. Kizil, and Z. W. Chen. 2018. A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal. Fuel Process. Technol. 177:237–45. doi:10.1016/j.fuproc.2018.04.034.
  • Ji, P., and J. X. Li. 2009. Analysis of heat transfer in a solid powder heat pipe heat exchanger. Mod. Chem. Ind. 1:72–75.
  • Jouhara, H., and R. Meskimmon. 2010. Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units. Energy 35:4592–99. doi:10.1016/j.energy.2010.03.056.
  • Kole, M., and T. K. Dey. 2013. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Appl. Therm. Eng. 50:763–70. doi:10.1016/j.applthermaleng.2012.06.049.
  • Kong, B., Z. H. Li, Y. L. Yang, Z. Liu, and D. C. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environ. Sci. Pollut. Res. 24:23453–70. doi:10.1007/s11356-017-0209-6.
  • Krishnaswamy, S., P. K. Agarwal, and R. D. Gunn. 1996. Low-temperature oxidation of coal. 3. modelling spontaneous combustion in coal stockpiles. Fuel 75:353–62. doi:10.1016/0016-2361(95)00249-9.
  • Kuenzer, C., J. Zhang, A. Tetzlaff, P. Dijk, S. Voigt, H. Mehl, and W. Wagner. 2007. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Appl. Geogr. 27:42–62. doi:10.1016/j.apgeog.2006.09.007.
  • Lei, C. K., J. Deng, K. Cao, L. Ma, Y. Xiao, and L. F. Ren. 2018. A random forest approach for predicting coal spontaneous combustion. Fuel 223:63–73. doi:10.1016/j.fuel.2018.03.005.
  • Li, B., J. Deng, Y. Xiao, X. W. Zhai, C. M. Shu, and W. Gao. 2018a. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China. Heat Mass Transfer 54:1755–66. doi:10.1007/s00231-017-2262-6.
  • Li, B., G. Liu, M. S. Bi, Z. B. Li, B. Han, and C. M. Shu. 2020a. Self-ignition risk classification for coal dust layers of three coal types on a hot surface. Energy 216:119197. doi:10.1016/j.energy.2020.119197.
  • Li, B., J. H. Wang, M. S. Bi, W. Gao, and C. M. Shu. 2020b. Experimental study of thermophysical properties of coal gangue at initial stage of spontaneous combustion. J. Hazard. Mater. 400:123251. doi:10.1016/j.jhazmat.2020.123251.
  • Li, L., B. T. Qin, D. Ma, H. Zhuo, H. J. Liang, and A. Gao. 2018b. Unique spatial methane distribution caused by spontaneous coal combustion in coal stockpile: An experimental study. Process. Saf. Environ. 116:199–207. doi:10.1016/j.psep.2018.01.014.
  • Li, Q. W., Y. Xiao, K. Q. Zhong, C. M. Shu, H. F. Lv, J. Deng, and S. L. Wu. 2020c. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel 275:117981. doi:10.1016/j.fuel.2020.117981.
  • Lu, L., C. Y. Xin, and X. Y. Liu. 2018. Heat and mass transfer of liquid nitrogen in coal porous media. Heat Mass Transfer 54:1101–11. doi:10.1007/s00231-017-2167-4.
  • Lu, Y. 2017. Laboratory study on the rising temperature of spontaneous combustion in coal stockpiles and a paste foam suppression technique. Energy Fuels 31:7290–98. doi:10.1021/acs.energyfuels.7b00649.
  • Ma, L., B. Li, J. Deng, Z. B. Li, and Y. Zhang. 2014. Deep heat transfer technology using thermal probe in high temperature region of coal storage pile (gangue hill) spontaneous combustion. Sci. Technol. Rev. 32:76–80.
  • Ma, L., L. Zou, L. F. Ren, Y. H. Chung, P. Y. Zhang, and C. M. Shu. 2020. Prediction indices and limiting parameters of coal spontaneous combustion in the Huainan mining area in China. Fuel 264:116883. doi:10.1016/j.fuel.2019.116883.
  • Nádudvari, Á. 2014. Thermal mapping of self-heating zones on coal waste dumps in Upper Silesia (Poland)–A case study. Int. J. Coal Geol. 128:47–54. doi:10.1016/j.coal.2014.04.005.
  • Naphon, P., D. Thongkum, and P. Assadamongkol. 2009. Heat pipe effect enhancement with refrigerant–nanoparticles mixtures. Energy Convers. Manage. 50:772–76. doi:10.1016/j.enconman.2008.09.045.
  • Noie, S. H. 2005. Heat transfer characteristics of a two-phase closed thermosiphon. Appl. Therm. Eng. 25:495–506. doi:10.1016/j.applthermaleng.2004.06.019.
  • Peng, G. Z., H. W. Wang, X. Song, and H. M. Zhang. 2017. Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models. Energy 132:269–79. doi:10.1016/j.energy.2017.05.067.
  • Qi, X. Y., D. M. Wang, H. B. Xue, L. Y. Jin, B. H. Su, and H. H. Xin. 2015. Oxidation and self-reaction of carboxyl groups during coal spontaneous combustion. Spectrosc. Lett. 48:173–78. doi:10.1080/00387010.2013.868360.
  • Schmidt, M., S. Suhendra, and H. Rüter. 2010. Heat pipes-suitable for extinguishing underground coal fire? Proc. Second Int. Conf. Coal Fire Res., Berlin, Germany 64:433–37.
  • Senthil, K. R., S. Vaidyanathan, and B. Sivaraman. 2015. Effect of copper nanofluid in aqueous solution of long chain alcohols in the performance of heat pipes. Heat Mass Transfer 51:181–93. doi:10.1007/s00231-014-1411-4.
  • Senthilkumar, R., S. Vaidyanathan, and B. Sivaraman. 2012. Comparative study on heat pipe performance using aqueous solutions of alcohols. Heat Mass Transfer 48:2033–40. doi:10.1007/s00231-012-1046-2.
  • Song, Z., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal Geol. 133:72–99. doi:10.1016/j.coal.2014.09.004.
  • Tang, Y. B., and H. Wang. 2019. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite. Process. Saf. Environ. 124:143–50. doi:10.1016/j.psep.2019.01.031.
  • Wang, Q. S., G. Song, and J. Sun. 2009. Spontaneous combustion prediction of coal by C80 and ARC techniques. Energy Fuels 23:4871–76. doi:10.1021/ef900372w.
  • Wang, S. B., K. L. Luo, X. Wang, and Y. Z. Sun. 2016. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories. Environ. Pollut. 209:107–13. doi:10.1016/j.envpol.2015.11.026.
  • Wen, H., Z. Yu, J. Deng, and X. W. Zhai. 2017. Spontaneous ignition characteristics of coal in a large-scale furnace: An experimental and numerical investigation. Appl. Therm. Eng. 114:583–92. doi:10.1016/j.applthermaleng.2016.12.022.
  • Wu, D., L. Jin, J. B. Peng, Y. B. Dong, and Z. Y. Liu. 2014. The thermal budget evaluation of the two-phase closed thermosyphon embankment of the Qinghai-Tibet Highway in permafrost regions. Cold Reg. Sci. Technol. 103:115–22. doi:10.1016/j.coldregions.2014.03.013.
  • Wullschleger, S. D., K. W. Childs, A. W. King, and P. J. Hanson. 2011. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes. Tree Physiol. 31:669–79. doi:10.1093/treephys/tpr051.
  • Zhang, J., T. Ren, Y. T. Liang, and Z. W. Wang. 2016. A review on numerical solutions to self-heating of coal stockpile: Mechanism, theoretical basis, and variable study. Fuel 182:80–109. doi:10.1016/j.fuel.2016.05.087.
  • Zhang, R., and H. Xie. 2001. Experimental study of the propensity of coal stockpiles to spontaneous combustion. J. Chin. Coal Soc. 26:168–71.
  • Zhang, Y. P., J. G. Wang, C. F. Ji, and L. Ma. 2017. Cooling effect analysis of heat pipe suppressing coal spontaneous combustion. Coal Eng. 2:100–02.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.