265
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Stabilization Mechanism of Burner-attached Flames in Laminar Non-premixed Jets

, ORCID Icon &
Pages 2957-2977 | Received 23 Oct 2020, Accepted 07 Mar 2021, Published online: 19 Apr 2021

References

  • Barnett, H. C., and R. R. Hibbard 1959. Basic consideratons in the combustion of hydrocarbon fuels with air. NACA Report 1300.
  • Cheng, T. S., C. P. Chen, C. S. Chen, Y. H. Li, C. Y. Wu, and Y. C. Chao. 2006. Characteristics of microjet methane diffusion flames. Combust. Theory Model 10 (5):861. doi:10.1080/13647830600551917a.
  • Chung, S. H., and B. J. Lee. 1991. On the characteristics of laminar lifted flames in a nonpremixed jet. Combust. Flame 86 (1–2):62. doi:10.1016/0010-2180(91)90056-H.
  • Friedman, R. 1948. The quenching of laminar oxyhydrogen flames by solid surfaces. Proc. Combust. Inst. 3:110.
  • Gao, J., A. Hossain, and Y. Nakamura. 2017. Flame base structures of micro-jet hydrogen/methane diffusion flames. Proc. Combust. Inst. 36 (3):4209. doi:10.1016/j.proci.2016.08.034.
  • Hirota, M., T. Yokomori, K. Yasuda, Y. Nagai, M. Mizomoto, and G. Masuya. 2007. Burning velocity of triple flames with gentle concentration gradient. Proc. Combust. Inst. 31 (1):893. doi:10.1016/j.proci.2006.08.068.
  • Ikeda, Y., and J. L. Beduneau. 2005. Attachment structure of a non-premixed laminar methane flame. Proc. Combust. Inst. 30 (1):391. doi:10.1016/j.proci.2004.08.165.
  • Juniper, M., and S. Candel. 2003. Edge diffusion flame stabilization behind a step over a liquid reactant. J. Propul. Power 19 (3):332. doi:10.2514/2.6134.
  • Kawamura, T., K. Asato, and T. Mazaki. 1980. Structure analysis of the stabilizing region of plane, laminar fuel-jet. flames. Combust. Sci. Technol 22 (5–6):211. doi:10.1080/00102208008952384.
  • Kim, J., K. N. Kim, S. H. Won, O. Fujita, J. Takahashi, and S. H. Chung. 2006. Numerical simulation and flight experiment on oscillating lifted flames in coflow jets with gravity level variation. Combust. Flame 145 (1–2):181. doi:10.1016/j.combustflame.2005.10.018.
  • Kim, J., S. H. Won, M. K. Shin, and S. H. Chung. 2002. Numerical simulation of oscillating lifted flames in coflow jets with highly diluted propane. Proc. Combust. Inst. 29 (2):1589. doi:10.1016/S1540-7489(02)80195-X.
  • Kim, K. N., S. H. Won, and S. H. Chung. 2007. Characteristics of laminar lifted flames in coflow jets with initial temperature variation. Proc. Combust. Inst. 31 (1):947. doi:10.1016/j.proci.2006.08.012.
  • Ko, Y. S., and S. H. Chung. 1999. Propagation of unsteady tribrachial flames in laminar non-premixed jets. Combust. Flame 118 (1–2):151. doi:10.1016/S0010-2180(98)00154-0.
  • Lamige, S., K. Lyons, C. Galizzi, F. André, M. Kuhni, and D. Escudié. 2014. Burner lip temperature and stabilization of a non-premixed jet flame. Exp. Therm. Fluid Sci. 56:45. doi:10.1016/j.expthermflusci.2013.11.008.
  • Law, C. K. 1993. In reduced kinetic mechanism for application in combustion systems. In A Compilation of Experimental Data on Laminar Burning Velocities, ed. N. Peters and B. Rogg, Vol. 15, Chap. 2 15–26. Berlin: Springer-Verlag.
  • Lee, B. J., and S. H. Chung. 1997. Stabilization of lifted tribrachial flames in a laminar nonpremixed jet. Combust. Flame 109 (1–2):163. doi:10.1016/S0010-2180(96)00145-9.
  • Lee, J., S. H. Won, S. H. Jin, and S. H. Chung. 2003a. Lifted flames in laminar jets of propane in coflow air. Combust. Flame 135 (4):449. doi:10.1016/S0010-2180(03)00182-2.
  • Lee, J., S. H. Won, S. H. Jin, S. H. Chung, O. Fujit, and K. Ito. 2003b. Propagation speed of tribrachial (triple) flame of propane in laminar jets under normal and micro gravity conditions. Combust. Flame 134 (4):411. doi:10.1016/S0010-2180(03)00115-9.
  • Lewis, B., and G. V. Elbe., Combustion, flames, and explosions of gases. 1987. Combustion Waves in Laminar Flow. Academic Press,London, Chap.V.215–417.
  • Otakeyama, Y., T. Yokomori, and M. Mizomoto. 2009. Stability of CH4–N2/air jet diffusion flame for various burner rim thicknesses. Proc. Combust. Inst. 32 (1):1091. doi:10.1016/j.proci.2008.05.002.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10 (3):319. doi:10.1016/0360-1285(84)90114-X.
  • Robson, K., and M. J. G. Wilson. 1969. The stability of laminar diffusion flames of methane. Combust. Flame 13 (6):626. doi:10.1016/0010-2180(69)90070-4.
  • Takahashi, F., and V. R. Katta. 2000a. Chemical kinetic structure of the reaction kernel of methane jet diffusion flames. Combust. Sci. Technol 155 (1):243. doi:10.1080/00102200008947292.
  • Takahashi, F., and V. R. Katta. 2000b. A reaction kernel hypothesis for the stability limit of methane jet diffusion flames. Proc. Combust. Inst. 28 (2):2071. doi:10.1016/S0082-0784(00)80615-3.
  • Takahashi, F., and V. R. Katta. 2005. Further studies of the reaction kernel structure and stabilization of jet diffusion flames. Proc. Combust. Inst. 30 (1):383. doi:10.1016/j.proci.2004.08.225.
  • Takahashi, F., M. Mizomoto, S. Ikai, and N. Futaki. 1985. Lifting mechanism of free jet diffusion flames. Proc. Combust. Inst. 20 (1):295. doi:10.1016/S0082-0784(85)80514-2.
  • Takahashi, F., W. J. Schmoll, and V. R. Katta. 1998. Attachment mechanisms of diffusion flames. Proc. Combust. Inst. 27 (1):675. doi:10.1016/S0082-0784(98)80460-8.
  • Turns, S. R. 2000. An introduction to combustion: Concepts and applications. In Laminar Premixed Flames, Chap. 8, ed. J. P. Holman and J. Lioyd, 284–85. New York: McGraw-Hill Higher Education Press.
  • Upatnieks, A., J. F. Diiscoll, C. C. Rasmussen, and S. L. Ceccio. 2004. Liftoff of turbulent jet flames-assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138 (3):259. doi:10.1016/j.combustflame.2004.04.011.
  • Williams, F. A. (Ed.), Combustion Theory: The fundamental theory of chemically reacting flow systems. 1985. 2nd ed. Menlo Park, Calif.: Benjamin/Cummings Publ. Co. Chap. 9, pp. 315–316.
  • Won, S. H., J. Kim, M. K. Shin, S. H. Chung, O. Fujita, T. Mori, J. H. Choi, and K. Ito. 2002. Normal and microgravity experiment of oscillating lifted flames in coflow. Proc. Combust. Inst. 29 (1):37. doi:10.1016/S1540-7489(02)80009-8.
  • Xiong, Y., M. S. Cha, and S. H. Chung. 2015. Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames. Proc. Combust. Inst. 35 (1):873. doi:10.1016/j.proci.2014.06.025.
  • Xu, H., F. Liu, S. Sun, Y. Zhao, S. Meng, W. Tang, D. Feng, and M. Gu. 2018. Influence of preheating and burner geometry on modeling the attachment of laminar coflow CH4/air diffusion flames. Combust. Flame. 191:381. doi:10.1016/j.combustflame.2018.01.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.