255
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Large-Eddy Simulation of a Lifted High-Pressure Jet-Flame with Direct Chemistry

ORCID Icon, , , , , & show all
Pages 2978-3002 | Received 07 Jan 2021, Accepted 12 Mar 2021, Published online: 08 Apr 2021

References

  • Aditya, K., A. Gruber, C. Xu, T. Lu, A. Krisman, M. R. Bothien, and J. H. Chen. 2019. Direct numerical simulation of flame stabilization assisted by autoignition in a reheat gas turbine combustor. Proc. Comb. Inst. 37 (2):2635–42. doi:10.1016/j.proci.2018.06.084.
  • Ax, H., O. Lammel, R. Lückerath, and M. Severin. 2019. High-Momentum Jet Flames at Elevated Pressure, C: Statistical Distribution of Thermochemical States Obtained From Laser-Raman Measurements. J. Eng. Gas Turb. Power 142:7.
  • Bodenstein, M. 1913. Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z. Phys. Chem. 85 (1):329–97. doi:10.1515/zpch-1913-0112.
  • Butler, T. D., and P. J. O’rourke. 1977. A numerical method for two dimensional unsteady reacting flows. Symp. (Int.) Combust. 16 (1):1503–15. doi:10.1016/S0082-0784(77)80432-3.
  • Cabra, R., T. Myhrvold, J. Y. Chen, R. W. Dibble, A. N. Karpetis, and R. S. Barlow. 2002. Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29 (2):1881–88. doi:10.1016/S1540-7489(02)80228-0.
  • Cailler, M., N. Darabiha, and B. Fiorina. 2020. Development of a Virtual Optimized Chemistry Method. Application to Hydrocarbon/Air Combustion. Combust. Flame 211:281–302. doi:10.1016/j.combustflame.2019.09.013.
  • Cailler, M., N. Darabiha, D. Veynante, and B. Fiorina. 2017. Building-Up Virtual Optimized Mechanism for Flame Modeling. Proc. Combust. Inst. 36 (1):1251–58. doi:10.1016/j.proci.2016.05.028.
  • Charlette, F., C. Meneveau, and D. Veynante. 2002. A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part I- Non-Dynamic Formulation and Initial Tests. Combust. Flame 131 (2):159–80. doi:10.1016/S0010-2180(02)00400-5.
  • Colin, O., F. Ducros, D. Veynante, and T. Poinsot. 2000. A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion. Phys. Fluids 12 (7):1843–63. doi:10.1063/1.870436.
  • Cremer, H. 1972. Zur Reaktionskinetik der Methan-Oxidation. Chemie-Ing. Technik 44 (1–2):8–15. doi:10.1002/cite.330440103.
  • D. G. Goodwin, Raymond L. S, Harry K. M, and Bryan W. W. 2009. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. h ttps://w ww.c antera.org, 2021. Version 2.5.1. d oi:1 0.5 281/z enodo.4527812
  • Di Domenico, M., P. Gerlinger, and B. Noll. 2011. Numerical simulations of confined, turbulent, lean, premixed, flames using a detailed chemistry combustion model. In ASME Turbo Expo, 519–30.
  • Driscoll, J., and J. Temme. 2011. Role of Swirl in Flame Stabilization. In 49th AIAA Aerospace Sciences Meeting, 108.
  • Eckel, G., J. Grohmann, L. Cantu, N. Slavinskaya, T. Kathrotia, M. Rachner, P. Le Clercq, W. Meier, and M. Aigner. 2019. LES of a Swirl-Stabilized Kerosene Spray Flame with a Multi-Component Vaporization Model and Detailed Chemistry. Combust. Flame 207:134–52. doi:10.1016/j.combustflame.2019.05.011.
  • Felden, A., L. Esclapez, E. Riber, B. Cuennot, and H. Wang. 2018. Including Real Fuel Chemistry in LES of Turbulent Spray Combustion. Combust. Flame 193:397–416. doi:10.1016/j.combustflame.2018.03.027.
  • Felden, A., P. Pepiot, L. Esclapez, E. Riber, and B. Cuennot. 2019. Including Analytically Reduced Chemistry (ARC) in CFD Applications. Acta Astronaut. 158:444–59. doi:10.1016/j.actaastro.2019.03.035.
  • Franzelli, B., A. Vie, M. Boileau, B. Fiorina, and N. Darabiha. 2016. Large Eddy Simulation of Swirled Spray Flame Using Detailed and Tabulated Chemical Descriptions. Flow Turbul. Combust. 98 (2):633–61. doi:10.1007/s10494-016-9763-0.
  • G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T.Bowman, Ronald K. Hanson, S. Song, W. C. Gardiner, Jr., et al. 2000. Accessed March 30, 2021. w ww.m e.berkeley.edu/gri_mech
  • Gruhlke, P., H. Janbazi, I. Wlokas, C. Beck, and A. M. Kempf. 2020. Investigation of a High Karlovitz, High Pressure Premixed Jet Flame with Heat Losses by LES. Combust. Sci. Technol., 192(11), pp.2138–2170.1–33.
  • Gruschka, U., B. Janus, J. Meisl, M. Huth, and S. Wasif. 2008. ULN System for the New SGT5-8000H Gas Turbine: Design and High Pressure Rig Test Results. In ASME Turbo Expo, American Society of Mechanical pp. 913–919.
  • Han, W., H. Wang, G. Kuenne, E. R. Hawkes, J. H. Chen, J. Janicka, and J. Hasse. 2019. Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame. Proc. Combust. Inst. 37 (2):2555–63. doi:10.1016/j.proci.2018.06.228.
  • Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward. 2005. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM Trans. Math. Softw. 31 (3):363–96. doi:10.1145/1089014.1089020.
  • Jaravel, T., E. Riber, B. Cuenot, and G. Bulat. 2016. Large Eddy Simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction. Proc. Combust. Inst. 35 (3):3817–25.
  • Lam, S. H., and D. A. Goussis. 1989. Understanding Complex Chemical Kinetics with Computational Singular Perturbation. Symp. Int. Combust. Proc. 22 (1):931–41. doi:10.1016/S0082-0784(89)80102-X.
  • Lam, S. H., and D. A. Goussis. 1994. The CSP Method for Simplifying Kinetics. Int. J. Chem. Kinet. 26 (4):461–86. doi:10.1002/kin.550260408.
  • Lammel,O., M. Severin, H. Ax, R. Lückerath, A. Tomasello, E. Yeshaswini, B. Noll, M. Aigner, and L. Panek. 2017. High Momentum Jet Flames At Elevated Pressure, A: Experimental and Numerical Investigation for Different Fuels. In ASME Turbo Expo. Paper No: GT2017-64615, V04BT04A035; 13.
  • Lammel, O., M. Stöhr, P. Kutne, C. Dem, W. Meier, and M. Aigner. 2012. Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques. J. Eng. Gas Turb. Power 134 (4):041506. doi:10.1115/1.4004733.
  • Lammel, O., and R. Lückerath (2017). FLOX Wobbe, Teilprojekt 1.4/1D. Technical report DLR.
  • Legier, J. P., T. J. Poinsot, and D. Veynante. 2000. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. Proc. Summer Prog. 12:157–68.
  • Li, J., Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, and J. J. Scire. 2007. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int. J. Chem. Kin. 39 (3):109–36. doi:10.1002/kin.20218.
  • Longwell, J. P., E. E. Frost, and J. J. Weiss. 1953. Flame Stability in Bluff Body Recirculation Zones. Ind. Eng. Chem. 45 (8):1629–33. doi:10.1021/ie50524a019.
  • Løvås, T. 2009. Automatic Generation of Skeletal Mechanisms for Ignition Combustion Based on Level of Importance Analysis. Combust. Flame 156 (7):1348–58. doi:10.1016/j.combustflame.2009.03.009.
  • Løvås, T., D. Nilsson, and F. Mauss. 2000. Automatic Reduction Procedure for Chemical Mechanisms Applied to Premixed Methane/Air Flames. Proc. Combust. Inst. 28 (2):1809–15. doi:10.1016/S0082-0784(00)80583-4.
  • Lu, T., C. Yoo, J. Chen, and C. Law. 2008. Analysis of a Turbulent Lifted Hydrogen/Air Jet Flame from Direct Numerical Simulation with Computational Singular Perturbation. In AIAA, 1013.
  • Lu, T., and C. K. Law. 2005. A Directed Relation Graph Method for Mechanism Reduction. Proc. Combust. Inst. 30 (1):1333–41. doi:10.1016/j.proci.2004.08.145.
  • Lu, T., and C. K. Law. 2008. A Criterion Based on Computational Singular Perturbation for the Identification of Quasi Steady State Species: A Reduced Mechanism for Methane Oxidation with NO Chemistry. Combust. Flame 154 (4):761–74. doi:10.1016/j.combustflame.2008.04.025.
  • Lu, T., C. S. Yoo, J. H. Chen, and C. K. Law. 2010. Three-Dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: A Chemical Explosive Mode Analysis. J. Fluid Mech. 652:45–64. doi:10.1017/S002211201000039X.
  • Luca, S., A. N. Al-Khateeb, A. Attili, and F. Bisetti. 2018. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane-Air Flame Simulations. J. Propul. Power 34 (1):153–60. doi:10.2514/1.B36528.
  • Luo, Z., C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and T. Lu. 2012. Chemical Explosive Mode Analysis for a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow. Combust. Flame 159 (1):265–74. doi:10.1016/j.combustflame.2011.05.023.
  • Maio, G., M. Cailler, R. Mercier, and B. Fiorina. 2019. Virtual chemistry for temperature and CO prediction in LES of non-adiabatic turbulent flames. Proc. Combust. Inst. 37 (2):2591–99. doi:10.1016/j.proci.2018.06.131.
  • Niemeyer, K. E., and N. J. Curtis. 2017. pyJac v1.0.4. Accessed March 30, 2021. https://github.com/slackha/pyJac
  • Panchal, A., R. Ranjan, and S. Menon. 2018. Effect of Chemistry Modeling on Flame Stabilization of a Swirl Spray Combustor. In AIAA Propulsion and Energy Forum.
  • Pletcher, R. M., J. C. Tannehill, and D. Anderson. 2012. Computational Fluid Mechanics and Heat Transfer. In CRC press. Bristol, PA: Taylor & Francis.
  • Proch, F., and A. M. Kempf. 2015. Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Combust. Inst. 35 (3):3337–45. doi:10.1016/j.proci.2014.07.036.
  • Reddy, V. M., A. Katoch, L. R. William, and S. Kumar. 2015. Experimental and Numerical Analysis for High Intensity Swirl Based Ultra-Low Emission Flameless Combustor Operating with Liquid Fuels. Proc. Combust. Inst. 35 (3):3581–89. doi:10.1016/j.proci.2014.05.070.
  • Revel, J., J. C. Boettner, M. Cathonnet, and J. S. Bachmann. 1994. Derivation of a Global Chemical Kinetic Mechanism for Methane Ignition and Combustion. J. Chim. Phys. 91:365–82. doi:10.1051/jcp/1994910365.
  • Schmitt, P., T. J. Poinsot, B. Schuermans, and K. P. Geigle. 2007. Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570:17–46. doi:10.1017/S0022112006003156.
  • Schulz, O., E. Piccoli, A. Felden, G. Staffelbach, and N. Noiray. 2019. Autoignition-Cascade in the Windward Mixing Layer of a Premixed Jet in Hot Vitiated Crossflow. Combust. Flame 201:215–33. doi:10.1016/j.combustflame.2018.11.012.
  • Schulz, O., and N. Noiray. 2019. Combustion regimes in sequential combustors: Flame propagation and autoignition at elevated temperature and pressure. Combust. Flame 205:253–68. doi:10.1016/j.combustflame.2019.03.014.
  • Severin, M. 2019. Analyse der Flammenstabilisierung intensiv mischender Jetflammen für Gasturbinenbrennkammern. In DLR Stuttgart.
  • Severin, M., O. Lammel, H. Ax, R. Lückerath, W. Meier, M. Aigner, and J. Heinze. 2018. High Momentum Jet Flames At Elevated Pressure, B: Detailed Investigation of Flame Stabilization With Simultaneous PIV and OH-LIF. J. Eng. Gas Turb. Power 140 (4):041508. doi:10.1115/1.4038126.
  • Sidey, J., E. Mastorakos, and R. L. Gordon. 2014. Simulations of Autoignition and Laminar Premixed Flames in Methane/Air Mixtures Diluted with Hot Products. Combust. Sci. Technol. 186 (4–5):453–65. doi:10.1080/00102202.2014.883217.
  • Sikalo, N., O. Hasemann, C. Schulz, A. M. Kempf, and I. Wlokas. 2014. A Genetic Algorithm-Based Method for the Automatic Reduction of Reaction Mechanisms. Int. J. Chem. Kinet. 46 (1):41–59. doi:10.1002/kin.20826.
  • Sikalo, N., O. Hasemann, C. Schulz, A. M. Kempf, and I. Wlokas. 2015. A Genetic Algorithm–Based Method for the Optimization of Reduced Kinetics Mechanisms. Int. J. Chem. Kinet. 47 (11):695–723. doi:10.1002/kin.20942.
  • Spalding, D. B. 1961. A Single Formula for the “Law of the Wall”. J. Appl. Mech. 28 (3):455–58. doi:10.1115/1.3641728.
  • Turanyi, T. 1990. Sensitivity Analysis of Complex Kinetic Systems. Tools and Applications. J. Math. Chem. 5 (3):203–48. doi:10.1007/BF01166355.
  • Valorani, M., D. A. Goussis, F. Creta, and H. N. Najm. 2005. Higher Order Corrections in the Approximation of Low-Dimensional Manifolds and the Construction of Simplified Problems with the CSP Method. J. Comput. Phys. 209 (2):754–86. doi:10.1016/j.jcp.2005.03.033.
  • Valorani, M., and S. Paolucci. 2009. The G-Scheme: A Framework for Multi-Scale Adaptive Model Reduction. J. Comput. Phys. 228 (13):4665–701. doi:10.1016/j.jcp.2009.03.011.
  • Wang, G., M. Boileau, and D. Veynante. 2011. Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158 (11):2199–213. doi:10.1016/j.combustflame.2011.04.008.
  • Weigand, P., W. Meier, X. R. Duan, W. Stricker, and M. Aigner. 2006. Investigations of Swirl Flames in a Gas Turbine Model Combustor. Combust. Flame 144 (1–2):205–24. doi:10.1016/j.combustflame.2005.07.010.
  • Windenm, B. (2014). Powering Performance of a Self Propelled Ship in Waves. PhD Thesis, University of Southampton.
  • Wuenning, J. 1991. Flammenlose Oxidation von Brennstoff mit hochvorgewärmter Luft. Chem. Ing. Tech. 63 (12):1243–45. doi:10.1002/cite.330631219.
  • Xin, Y., D. A. Sheen, H. Wang, and C. K. Law. 2014. Skeletal Reaction Model Generation, Uncertainty Quantification and Minimization: Combustion of Butane. Combust. Flame 161 (12):3031–39. doi:10.1016/j.combustflame.2014.07.018.
  • Yimer, I., I. Campbell, and L.-Y. Jiang. 2002. Estimation of the Turbulent Schmidt Number from Experimental Profiles of Axial Velocity and Concentration for High-Reynolds-Number Jet Flows. Can. Aeronaut. Space J. 48 (3):195–200. doi:10.5589/q02-024.
  • Yoshizawa, A., and K. Horiuti. 1985. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54 (8):2834–39. doi:10.1143/JPSJ.54.2834.
  • Zhang, F., H. Bonart, T. Zirwes, P. Habisreuther, H. Bockhorn, and N. Zarzalis. 2015. High Performance Computing in Science and Engineering. W. E. Nagel, D. H. Kröner, and M. M. Resch, Ed. Basel: Springer International Publishing, 221–236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.