363
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the confinement effects on the blast wave propagated from gas mixture detonation utilizing the CESE method with finite rate chemistry model

&
Pages 3003-3020 | Received 18 Sep 2020, Accepted 16 Mar 2021, Published online: 02 Apr 2021

References

  • Chamberlain, G., E. Oran, and A. Pekalski. 2019. Detonations in industrial vapour cloud explosions. J. Loss Prev. Process Ind. 62:103918. doi:10.1016/j.jlp.2019.103918.
  • Chang, S. & Wang. X., 2002. Courant number insensitive CE/SE Euler schemes. In: 38th AIAA/ASME/SAE/ASEE Joint propulsion conference & exhibit, Session: SR-4: Unsteady flows (The CE/SE method). h ttps://d oi.org/1 0.2514/6.2002–3890
  • Chang, S. C. 1995. The method of space time conservation element and solution element- a new approach for solving the Navier Stocks and Euler equations. J. Comput. Phys. 119 (2):295–324. doi:10.1006/jcph.1995.1137.
  • Costin, N. S. 2014. Numerical simulation of detonation of an explosive atmosphere of liquefied petroleum gas in a confined space. Defence Technology 10 (3):294–97. doi:10.1016/j.dt.2014.06.008.
  • Dorofeev, S. B. 2007. Evaluation of safety distances related to unconfined hydrogen explosions. Int. J. Hydrogen Energy 32 (13):2118–24. doi:10.1016/j.ijhydene.2007.04.003.
  • Hallquist, J., 2017. LS-DYNA® keyword user’s manual, volume III (multi-physics solvers) LS-DYNA R10.0. Livermore Software Technology Corporation.
  • Im, K. S., and J. Yu, 2003. Analysis of direct detonation initiation with realistic finite-rate chemistry. In: 41the AIAA aerospace science meeting & exhibit, Session: P & C-15: Detonation and other combustion processes. https://doi.org/10.2514/6.2003-1318
  • Im, K. S., J. Yu, C. K. Kim, S. C. Chang, and P. Jorgenson, 2002. Application of the CESE method to detonation with realistic finite-rate chemistry. In: 40the AIAA aerospace science meeting & exhibit. https://doi.org/10.2514/6.2002-1020
  • Im, K. S., Z. C. Zhang, and G. O. Cook, 2013. Multiphase and chemically reactive flows in LS-DYNA®. In: 21st AIAA Computational Fluid Dynamics Conference.  https://doi.org/10.2514/6.2013-2695
  • Julien, B., I. Sochet, P. Tadini, and T. Vaillant. 2017. Shock wave propagation within a confined multi-chamber system. Shock Waves 28 (4):683–92. doi:10.1007/s00193-017-0779-8.
  • Julien, B., Sochet, I., Tadini, P., & Vaillant, T., 2017. Shock wave propagation within a confined multi-chamber system. Shock Waves, 28, 683–692. https://doi.org/10.1007/s00193-017-0779–8
  • Kang, H. S., No, H. C., Kim, S. B., & Kim, M. H., 2016. Application of the developed CFD analysis methodology to H2 explosion accidents in an open space. Int. J. Hydrogen Energy,42, 1306 – 1317. h ttps://d oi.org/1 0.1016/j.ij hydene.2016.09.148
  • Kim, D., and J. Kim. 2019. Numerical method to simulate detonative combustion of hydrogen-air mixture in a containment. Engineering Applications of Computational Fluid Mechanics 13 (1):938–53. doi:10.1080/19942060.2019.1660219.
  • Lee, J. H., and I. O. Moen. 1980. The mechans of transition from deflagration to detonation in vapor cloud explosions. Prog. Energy Combust. Sci. 6 (4):359–89. doi:10.1016/0360-1285(80)90011-8.
  • Matsui, H., and J. H. Lee. 1979. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. Symposium (International) on Combustion 17 (1):1269–80. doi:10.1016/S0082-0784(79)80120-4.
  • Mawid, M. A., T. W. Park, B. Sekar, and C. Arana, 1999. Numerical analysis of pulse detonation engine using global and reduced hydrocarbon kinetics. In: 9th AIAA international space planes and hypersonic systems and technologies conference.
  • Pekalski, A., J. F. Zevenbergen, S. M. Lemkowitz, and H. J. Pasman. 2005. A review of explosion prevention and protection systems suitable as ultimate layer of protection in chemical process installations. Process Safety and Environmental Protection 83 (1):1–17. doi:10.1205/psep.04023.
  • Rokhy, H., and H. Soury. 2019. Fluid structure interaction with a finite rate chemistry model for simulation of gaseous detonation metal-forming. International Journal of Hydrogen Energy 44 (41):23289–302. doi:10.1016/j.ijhydene.2019.07.030.
  • Rokhy, H., and T. M. Mostofi. 2021. 3D numerical simulation of the gas detonation forming of aluminum tubes considering fluid-structure interaction and chemical kinetic model. Thin-Walled Structures 161:107469. doi:10.1016/j.tws.2021.107469.
  • Sauvan, P. E., I. Sochet, and S. Trélat. 2012. Analysis of reflected blast wave pressure profiles in a confined room. Shock Waves 22 (3):253–64. doi:10.1007/s00193-012-0363-1.
  • Sochet, I., P. Gillard, and F. Guelon. 2006. Effect of the concentration distribution on the gaseous deflagration propagation in the case of H2/O2 mixture. J. Loss Prev. Process Ind. 19 (2–3):250–62. doi:10.1016/j.jlp.2005.02.006.
  • Sochet, I., P. E. Sauvan, R. Boulanger, and F. Nozeres. 2014a. Effect of a gas charge explosion at the closed end of a gas storage system. J. Loss Prev. Process Ind. 27:42–48. doi:10.1016/j.jlp.2013.10.003.
  • Sochet, I., P. E. Sauvan, R. Boulanger, and F. Nozeres. 2014b. External explosion in an industrial site. J. Loss Prev. Process Ind. 29:56–64. doi:10.1016/j.jlp.2014.02.001.
  • Sochet, I., S. Eveillard, J. Y. Vincont, P. F. Piserchia, and X. Rocourt. 2017. Influence of the geometry of protective barriers on the propagation of shock waves. Shock Waves 27 (2):209–19. doi:10.1007/s00193-016-0625-4.
  • Sochet, I., Sauvan, P.E., Boulanger, R., & Nozeres, F., 2014a. Effect of a gas charge explosion at the closed end of a gas storage system. J. Loss Prev. Process Ind., 27, 42–48. https://doi.org/10.1016/j.jlp.2013.10.003
  • Sochet, I., Sauvan, P.E., Boulanger, R., & Nozeres, F., 2014b. Extern al explosion in an industrial site. J. Loss Prev. Process Ind., 29, 56–64. https://doi.org/10.1016/j.jlp.2014.02.001
  • Sochet, I., T. Lamy, and J. Brossard. 2000. Experimental investigation on the detonability of non-uniform gaseous mixtures. Shock Waves 10 (5):363–76. doi:10.1007/s001930000066.
  • Trélat, S., I. Sochet, B. Autrusson, K. Cheval, and O. Loiseau. 2007a. Impact of a shock wave on a structure on explosion at altitude. J. Loss Prev. Process Ind. 20 (4–6):509–16. doi:10.1016/j.jlp.2007.05.004.
  • Trélat, S., Sochet, I., Autrusson, B., Loiseau, O, & Cheval, K., 2007b. Strong explosion near a parallelepipedic structure. Shock Waves, 16, 349–357. https://doi.org/10.1007/s00193-006-0069–3
  • Vyazmina, E., S. Jallais, and S. Trélat. 2016. CFD Based design for blast walls to mitigate explosion consequences: Validation and best practice. Congrès lambda mu 20 de maîtrise des risqué et de sûreté de fonctionnement; Saint Malo, France. doi:10.4267/2042/61799.
  • Zhang, Z. C., and I. Caldichoury. 2013. Recent developments, application areas and validation results of the compressible fluid solver (CESE) specialized in high speed flows. In 9th European LS-DYNA® user conference. Manchester: UK.
  • Zhang, Z. C., S. C. Chang, and S. T. Yu. 2001. A space-time conservation element and solution element for solving the two-and three-dimensional unsteady Euler equations using quadrilateral and hexagonal meshes. J. Comput. Phys. 175,168-199. doi:10.1006/jcph.2001.6934.
  • Zyskowski, A., I. Sochet, G. Mavrot, P. Bailly, and J. Renard. 2004. Study of the explosion process in a small scale experiment_structural loading. J. Loss Prev. Process Ind. 17 (4):291–99. doi:10.1016/j.jlp.2004.05.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.