145
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation of Low-Frequency Surge of Double-Outlet Return Valve for CFB Boiler

, , , , , , ORCID Icon, & show all
Pages 3021-3037 | Received 23 Dec 2020, Accepted 14 Mar 2021, Published online: 02 Apr 2021

References

  • Adamczyk, W. P., G. Wecel, M. Klajny, P. Kozolub, A. Klimanek, and R. A. Białecki. 2014. Modeling of particle transport and combustion phenomena in a large-scale circulating fluidized bed boiler using a hybrid Euler-Lagrange approach. Particuology 16:29–40. doi:10.1016/j.partic.2013.10.007.
  • Adamczyk, W. P., P. Kozołub, G. Kruczek, M. Pilorz, A. Klimanek, T. Czakiert, and G. Wecel. 2016. Numerical approach for modeling particle transport phenomena in a closed loop of a circulating fluidized bed. Particuology 29:69–79. doi:10.1016/j.partic.2015.12.006.
  • Basu, P., and J. Butler. 2009. Studies on the operation of loop-seal in circulating fluidized bed boilers. Appl. Energy 86 (9):1723–31. doi:10.1016/j.apenergy.2008.11.024.
  • Basu, P., and L. Cheng. 2000. An analysis of loop seal operations in a circulating fluidized bed. Chem. Eng. Res. Des. 78 (7):991–98. doi:10.1205/026387600528102.
  • Cai, R., X. Ke, J. Lyu, H. Yang, M. Zhang, G. Yue, and W. Ling. 2017. Progress of circulating fluidized bed combustion technology in China: Areview. Clean Energy 1 (1):36–49. doi:10.1093/ce/zkx001.
  • Cheng, C., J. Werther, S. Heinrich, H. Qi, and E. U. Hartge. 2013. CPFD simulation of circulating fluidized bed risers. Powder Technol. 235:238–47. doi:10.1016/j.powtec.2012.10.014.
  • Cheng, L., J. Ji, Y. Wei, Q. Wang, M. Fang, Z. Luo, M. Ni, and K. Cen. 2020. A note on large-size supercritical CFB technology development. Powder Technol. 363:398–407. doi:10.1016/j.powtec.2019.12.044.
  • Cui, Y., W. Zhong, J. Xiang, and G. Liu. 2019. Simulation on coal-fired supercritical CO2 circulating fluidized bed boiler: Coupled combustion with heat transfer. Adv. Powder Technol. 30 (12):3028–39. doi:10.1016/j.apt.2019.09.010.
  • Cui, Y., X. Liu, and W. Zhong. 2020. Simulations of coal combustion in a pressurized supercritical CO2 circulating fluidized bed. Energy Fuels 34 (4):4977–92. doi:10.1021/acs.energyfuels.0c00418.
  • Czakiert, T., K. Sztekler, S. Karski, D. Markiewicz, and W. Nowak. 2010. Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig. Fuel Process. Technol. 91:1617–23. doi:10.1016/j.fuproc.2010.06.010.
  • Huang, Y., M. Zhang, J. Lyu, Z. Liu, and H. Yang. 2018a. Effects of gas leakage on the separation performance of a cyclone. Part 1: Experimental investigation. Chem. Eng. Res. Des. 136:900–05. doi:10.1016/j.cherd.2018.03.047.
  • Huang, Y., M. Zhang, J. Lyu, Z. Liu, and H. Yang. 2018b. Effects of gas leakage on the separation performance of a cyclone. Part 2: Simulation. Chem. Eng. Res. Des. 136:906–15. doi:10.1016/j.cherd.2018.06.002.
  • Huang, Z., L. Deng, and D. Che. 2020. Development and technical progress in large-scale circulating fluidized bed boiler in China. Front. Energy 14 (4):699–714. doi:10.1007/s11708-020-0666-3.
  • Ji, J., L. Cheng, Y. Wei, J. Wang, X. Gao, M. Fang, and Q. Wang. 2020. Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model. Particuology 49:77–87. doi:10.1016/j.partic.2019.04.003.
  • Jia, C., J. Li, J. Chen, S. Cui, H. Liu, and Q. Wang. 2020. Simulation and prediction of co-combustion of oil shale retorting solid waste and cornstalk in circulating fluidized bed using CPFD method. Appl. Therm. Eng. 165:113574. doi:10.1016/j.applthermaleng.2019.03.145.
  • Jiang, Y., G. Qiu, and H. Wang. 2014. Modelling and experimental investigation of the full-loop gas–solid flow in a circulating fluidized bed with six cyclone separators. Chem. Eng. Sci. 109:85–97. doi:10.1016/j.ces.2014.01.029.
  • Lim, M., S. Pang, and J. Nijdam. 2012. Investigation of solids circulation in a cold model of a circulating fluidized bed. Powder Technol. 226:57–67. doi:10.1016/j.powtec.2012.04.015.
  • Liu, G., D. Sun, H. Lu, B. Jacques, Y. Bai, S. Wang. 2010. Computations of Fluid Dynamics of a 50 MWe Circulating Fluidized Bed Combustor [J]. Industrial & Engineering Chemistry Research 49:5132-5140. doi: 10.1021/ie901103t
  • Lu, B., N. Zhang, W. Wang, J. Li, and H. John. 2013. 3-D Full-Loop Simulation of an Industrial-Scale Circulating Fluidized-Bed Boiler. AIChE J. 59 (4):1108–17. doi:10.1002/aic.13917.
  • Lyu, J., H. Yang, W. Ling, N. Li, and S. Wang. 2019. Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler. Front. Energy 13:113–19. doi:10.1007/s11708-017-0512-4.
  • Song, G., Z. Yang, and Q. Lyu. 2019. Investigation of gas-solid flow and temperature distribution uniformity of 350 MW supercritical CFB boiler with polygonal furnace. Powder Technol. 355:213–25. doi:10.1016/j.powtec.2019.07.042.
  • Thapa, R. K., A. Frohner, G. Tondl, C. Pfeifer, and B. M. Halvorsen. 2016. Circulating fluidized bed combustion reactor: Computational particle fluid dynamic model validation and gas feed position optimization. Comput. Chem. Eng. 92:180–88. doi:10.1016/j.compchemeng.2016.05.008.
  • Tu, Q., and H. Wang. 2018. CPFD study of a full-loop three-dimensional pilot-scale circulating fluidized bed based on EMMS drag model. Powder Technol. 323:534–47. doi:10.1016/j.powtec.2017.09.045.
  • Wang, H., Y. Li, G. Qiu, G. Song, and W. Yang. 2014. Measurement of gas–solids flow in loop seal and external heat exchanger in a circulating fluidized bed. Powder Technol. 266:249–61. doi:10.1016/j.powtec.2014.06.046.
  • Wang, Q., H. Yang, P. Wang, J. Lu, Q. Liu, H. Zhang, L. Wei, and M. Zhang. 2014a. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, Part I-Determination of modeling parameters. Powder Technol. 253:814–21. doi:10.1016/j.powtec.2013.11.041.
  • Wang, Q., H. Yang, P. Wang, J. Lu, Q. Liu, H. Zhang, L. Wei, and M. Zhang. 2014b. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, Part II-Investigation of solids circulation. Powder Technol. 253:822–28. doi:10.1016/j.powtec.2013.11.040.
  • Wischnewski, R., L. Ratschow, E. Hartge, and J. Werther. 2010. Reactive gas–solids flows in large volumes-3D modeling of industrial circulating fluidized bed combustors. Particuology 8 (1):67–77. doi:10.1016/j.partic.2009.08.001.
  • Wu, Y., X. Shi, Y. Liu, C. Wang, J. Gao, and X. Lan. 2020. 3D CPFD simulations of gas-solids flow in a CFB downer with cluster-based drag model. Powder Technol. 361:400–13. doi:10.1016/j.powtec.2019.07.044.
  • Xu, L., L. Cheng, J. Ji, Q. Wang, and M. Fang. 2019. A comprehensive CFD combustion model for supercritical CFB boilers. Particuology 43:29–37. doi:10.1016/j.partic.2017.11.012.
  • Xu, L., L. Cheng, Y. Cai, Y. Liu, Q. Wang, Z. Luo, and M. Ni. 2016. Heat flux determination based on the waterwall and gas-solid flow in a supercritical CFB boiler. Appl. Therm. Eng. 99:703–12. doi:10.1016/j.applthermaleng.2016.01.109.
  • Yang, S., H. Yang, H. Zhang, J. Li, and G. Yue. 2009. Impact of operating conditions on the performance of the external loop in a CFB reactor. Chem. Eng. Process. 48 (4):921–26. doi:10.1016/j.cep.2008.12.004.
  • Yue, G., R. Cai, J. Lu, and H. Zhang. 2017. From a CFB reactor to a CFB boiler-The review of R&D progress of CFB coal combustion technology in China. Powder Technol. 316:18–28. doi:10.1016/j.powtec.2016.10.062.
  • Zhang, N., B. Lu, W. Wang, and J. Li. 2010. 3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler. Chem. Eng. J. 162 (2):821–28. doi:10.1016/j.cej.2010.06.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.