141
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Numerical Investigation on the Rapid Turbulent Filtration Combustion under High Background Pressure

ORCID Icon, , &
Pages 3039-3063 | Received 17 Sep 2020, Accepted 22 Mar 2021, Published online: 19 Apr 2021

References

  • Alkhalaf, A., H. A. Refaey, N. Al-durobi, and E. Specht. 2018. Influence of contact point treatment on the cross flow mixing in a simple cubic packed bed: CFD simulation and experimental validation. Granular Matter 20 (2):22. doi:10.1007/s10035-018-0793-2.
  • Babkin, V. S. 1993. Filtrational combustion of gases: Present state of affairs and prospects. Pure & Appl. Chem. 65 (2):335–44. doi:10.1351/pac199365020335.
  • Bakry, A., A. Al-Salaymeh, A. H. Al-Muhtaseb, A. Abu-Jrai, and D. Trimis. 2011. Adiabatic premixed combustion in a gaseous fuel porous inert media under high pressure and temperature: Novel flame stabilization technique. Fuel 90 (2):647–58. doi:10.1016/j.fuel.2010.09.050.
  • Bedoya, C., I. Dinkov, P. Habisreuther, N. Zarzalis, H. Bockhorn, and P. Parthasarathy. 2015. Experimental study, 1D volume-averaged calculations and 3D direct pore level simulations of the flame stabilization in porous inert media at elevated pressure. Combustion & Flame 162 (10):3740–54. doi:10.1016/j.combustflame.2015.07.012.
  • Brenner, G., K. Pickenacker, O. Pickenacker, D. Trimis, K. Wawrzinek, and T. Weber. 2000. Numerical and experimental investigation of matrix-stabilized methane-air combustion in porous inert media. Combustion and Flame 123 (1):201–13. doi:10.1016/S0010-2180(00)00163-2.
  • Bubnovich, V. I., S. A. Zhdanok, and K. V. Dobrego. 2006. Analytical study of the combustion waves propagation under filtration of methane - air mixture in a packed bed. Int J Heat Mass Transf 49 (15):2578–86. doi:10.1016/j.ijheatmasstransfer.2006.01.019.
  • Chaffin, C., M. Koenig, M. Koeroghlian, R. D. Matthews, M. J. Hall, S. P. Nichols, and I.-G. Lim. 1991. Experimental investigation of premixed combustion within highly porous media. In Transaction of the 3rd ASME/JSME Thermal Eng. Conf, Reno, Nevada, March 17-22, 219-24.
  • De Lemos, M. J. S. 2009. Numerical simulation of turbulent combustion in porous materials. International Communications in Heat and Mass Transfer 36 (10):996–1001. doi:10.1016/j.icheatmasstransfer.2009.07.006.
  • De Lemos, M. J. S. 2010. Analysis of turbulent combustion in inert porous media. International Communications in Heat and Mass Transfer 37 (4):331–36. doi:10.1016/j.icheatmasstransfer.2009.12.004.
  • Djordjevic, N., P. Habisreuther, and N. Zarzalis. 2011. A numerical investigation of the flame stability in porous burners employing various ceramic sponge-like structures. Chem Eng Sci 66 (4):682–88. doi:10.1016/j.ces.2010.11.012.
  • Dobrego, K. V., and A. D. Chornyi. 2001. Parallels between the regimes of turbulent and filtration combustion of gases in inert porous media. Journal of Engineering Physics and Thermophysics 74 (3):581–90. doi:10.1023/A:1016791807624.
  • Dobrego, K. V., S. A. Zhdanok, and E. I. Khanevich. 2000. Analytical and experimental investigation of the transition from low-velocity to high-velocity regime of filtration combustion. Experimental Thermal and Fluid Science 21 (1):9–16. doi:10.1016/S0894-1777(99)00048-5.
  • Dobrego, K. V., S. A. Zhdanok, and A. I. Zaruba. 2011. Experimental and analytical investigation of the gas filtration combustion inclination instability. Int J Heat Mass Transf 44 (11):2127–36. doi:10.1016/S0017-9310(00)00263-5.
  • Dunnmon, J., S. Sobhani, M. Wu, R. Fahrig, and M. Ihme. 2017. An investigation of internal flame structure in porous media combustion via X-ray computed tomography. Proceedings of the Combustion Institute 36 (3):4399–408. doi:10.1016/j.proci.2016.06.188.
  • Dybbs, A., and R. V. Edwards. 1984. A new look at porous media fluid mechanic-Darcy to turbulent, 199-256. In: Bear J., Corapcioglu M.Y. (eds) Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series (Series E: Applied Sciences), vol 82. Springer, Dordrecht. doi:10.1007/978-94-009-6175-3_4
  • Eppinger, T., K. Seidler, and M. Kraume. 2011. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chemical Engineer Journal 166 (1):324–31. doi:10.1016/j.cej.2010.10.053.
  • Fand, R. M., B. Y. K. Kim, A. C. C. Lam, and R. T. Phan. 1987. Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. J Fluids Eng 109 (9):268–73. doi:10.1115/1.3242658.
  • Fand, R. M., and R. Thinakaran. 1990. The influence of the wall on flow through pipes packed with spheres. J Fluids Eng 112 (3):84–88. doi:10.1115/1.2909373.
  • Howell, J. R., M. J. Hall, and J. L. Ellzey. 1996. Combustion of hydrocarbon fuels within porous inert media. Progress in Energy and Combustion Science 22 (2):121–45. doi:10.1016/0360-1285(96)00001-9.
  • Jiang, L., H. Liu, D. Wu, J. Wang, and M. Z. Xie. 2018. Pore-scale simulation of vortex characteristics in randomly packed beds using LES/RANS models. Chem Eng Sci 177:431–44. doi:10.1016/j.ces.2017.11.040.
  • Jiang, L., H. Liu, D. Wu, J. Wang, M. Z. Xie, and M. Bai. 2017. Pore-scale simulation of hydrogen-air premixed combustion process in randomly packed beds. Energy & Fuels 31 (11):12791–803. doi:10.1021/acs.energyfuels.7b02020.
  • Jolls, K. R., and T. J. Hanratty. 1966. Transition to turbulence for flow through a dumped bed of spheres. Chem Eng Sci 21 (12):1185–90. doi:10.1016/0009-2509(66)85038-8.
  • Jouybari, N. F., M. Maerefat, and M. E. Nimvari. 2016. A pore scale study on turbulent combustion in porous media. Heat and Mass Transfer 52 (2):269–80. doi:10.1007/s00231-015-1547-x.
  • Kamal, M. M., and A. A. Mohamad. 2006. Combustion in porous media. Proceedings of the Institution of Mechanical Engineers. Part A: Journal of Power and Energy 220 (5):487–508.
  • Kuwahara, F., T. Yamane, and A. Nakayama. 2006. Large eddy simulation of turbulent flow in porous media. International Communications in Heat & Mass Transfer 33 (4):411–18. doi:10.1016/j.icheatmasstransfer.2005.12.011.
  • Lim, I.-G., and R. D. Matthews. 1998. Development of a model for turbulent combustion within porous inert media. International Journal of Fluid Mechanics Research 25 (1–3):111–22. doi:10.1615/InterJFluidMechRes.v25.i1-3.100.
  • Mathey, F., D. Cokljat, J. P. Bertoglio, and E. Sergent. 2006. Specification of LES inlet boundary condition using vortex method. Progress in Computational Fluid Dynamics 6 (1/2/3):58–67. doi:10.1504/PCFD.2006.009483.
  • Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. Aiaa J. 32 (8):1598–605. doi:10.2514/3.12149.
  • Mujeebu, M. A., M. Z. Abdullah, M. Z. A. Bakar, A. A. Mohamad, R. M. N. Muhad, and M. K. Abdullah. 2009. Combustion in porous media and its applications: A comprehensive survey. J. Environ. Manage. 90 (8):2287–312. doi:10.1016/j.jenvman.2008.10.009.
  • Mujeebu, M. A., M. Z. Abdullah, A. A. Mohamad, and M. Z. Bakar. 2010. Trends in modeling of porous media combustion. Progress in Energy and Combustion Science 36 (6):627–50. doi:10.1016/j.pecs.2010.02.002.
  • Okuyama, M., T. Suzuki, Y. Ogami, M. Kumagami, and H. Kobayashi. 2011. Turbulent combustion characteristics of premixed gases in a packed pebble bed at high pressure. Proceedings of the Combustion Institute 33 (1):1639–46. doi:10.1016/j.proci.2010.05.071.
  • Pavlidis, D., and D. Lathouwers. 2013. Realistic packed bed generation using small numbers of spheres. Nuclear Engineering and Design 263:172–78. doi:10.1016/j.nucengdes.2013.04.024.
  • Pereira, F. M., A. A. M. Oliveira, and F. F. Fachini. 2009. Asymptotic analysis of stationary adiabatic premixed flames in porous inert media. Combustion and Flame 156 (1):152–65. doi:10.1016/j.combustflame.2008.08.003.
  • Pereira, F. M., A. A. M. Oliveira, and F. F. Fachini. 2010. Theoretical analysis of ultra-lean premixed flames in porous inert media. J Fluid Mech 657:285–307. doi:10.1017/S0022112010001461.
  • Pereira, F. M., A. A. M. Oliveira, and F. F. Fachini. 2011. Validation of a subgrid model for porous buners simulations. Special Topics & Reviews in Porous Media: An International Journal 2 (2):91–100. doi:10.1615/SpecialTopicsRevPorousMedia.v2.i2.30.
  • Shams, A., F. Roelofs, E. M. J. Komen, and E. Baglietto. 2014. Large eddy simulation of a randomly stacked nuclear pebble bed. Comput Fluids 96:302–21. doi:10.1016/j.compfluid.2014.03.025.
  • Shi, J., C. Yu, B. Li, Y. Xia, and Z. Xue. 2013. Experimental and numerical studies on the flame instabilities in porous media. Fuel 106:674–81. doi:10.1016/j.fuel.2013.01.010.
  • Siu, W. W. M., and S. H. K. Lee. 2004. Transient temperature computation of spheres in three-dimensional random packings. Int J Heat Mass Transf 47 (5):887–98. doi:10.1016/j.ijheatmasstransfer.2003.08.022.
  • Sobhani, S., J. Legg, D. F. Bartz, J. J. Kojima, C. T. Chang, J. D. Sullivan, J. P. Moder, M. I, and M. Ihme. 2020. Experimental investigation of lean premixed pre-vaporized liquid-fuel combusion in porous media burners at elevated pressures up to 20 bar. Combustion and Flame 212:123–34. doi:10.1016/j.combustflame.2019.10.033.
  • Spalart, P. R., S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, and A. Travin. 2006. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20 (3):181–95. doi:10.1007/s00162-006-0015-0.
  • Yakovlev, I., and S. Zambalov. 2019. Three-dimensional pore-scale numerical simulation of methane-air combustion in inert porous media under the conditions of upstream and downstream combustion wave propagation through the media. Combustion and Flame 209:74–98. doi:10.1016/j.combustflame.2019.07.018.
  • Yarahmadi, A., M. R. H. Nobari, and R. Hosseini. 2011. A numerical investigation of laminar and turbulent premixed flames in porous media. Combustion Science and Technology 183 (11):1164–83. doi:10.1080/00102202.2011.586007.
  • Zheng, C., L. Cheng, A. Saveliev, Z. Luo, and K. Cen. 2011. Numerical studies on flame inclination in porous media combustors. Int J Heat Mass Transf 54 (15–16):3642–49. doi:10.1016/j.ijheatmasstransfer.2011.02.066.
  • Zimont, V. L., F. Biagioli, and K. Syed. 2001. Modelling turbulent premixed combustion in the intermediate steady propagation regime. Progress in Computational Fluid Dynamics 1 (1/2/3):14–28. doi:10.1504/PCFD.2001.001467.
  • Zimont, V. L., W. Polifke, M. Bettelini, and W. Weisenstein. 1998. An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure. Journal of Engineering for Gas Turbines and Power 120 (3):526–32. doi:10.1115/1.2818178.
  • Žukauskas, A. 1987. Heat Transfer from tubes in crossflow. Advances in Heat Transfer 8: 93-160. doi:10.1016/S0065-2717(08)70038-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.