162
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Flame propagation behaviours and overpressure characteristics of LDPE dust / ethylene hybrid mixture explosions

, , , , ORCID Icon &
Pages 3064-3093 | Received 16 Jan 2021, Accepted 22 Mar 2021, Published online: 19 Apr 2021

References

  • Abuswer, M., P. Amyotte, and F. Khan. 2013. A quantitative risk management framework for dust and hybrid mixture explosions. J. Loss Prev. Process Ind. 26 (2):283–89. doi:10.1016/j.jlp.2011.08.010.
  • Addai, E. K., D. Gabel, M. Kamal, and U. Krause. 2016. Minimum ignition energy of hybrid mixtures of combustible dusts and gases. Process Saf. Environ. Prot. 102:503–12. doi:10.1016/j.psep.2016.05.005.
  • Addo, A., A. G. Dastidar, J. R. Taveauc, L. S. Morrisond, F. I. Khane, and P. R. Amyotte. 2019. Niacin, lycopodium and polyethylene powder explosibility in 20-L and 1-m3 test chambers. J. Loss Prev. Process Ind. 62. doi:10.1016/j.jlp.2019.103937.
  • Amyotte, P. R., C. T. Cloney, F. I. Khan, and R. C. Ripley. 2012. Dust explosion risk moderation for flocculent dusts. J. Loss Prev. Process Ind. 25 (5):862–69. doi:10.1016/j.jlp.2012.05.007.
  • Bagaria, P., Q. Li, A. Dastidar, and C. Mashuga. 2019. Classification of particle breakage due to dust dispersion. Powder Technol. 342:204–13. doi:10.1016/j.powtec.2018.09.089.
  • Blouquin, R. 1996. Contribution à l’étude théorique des interactions entre combustion et rayonnement. University of Poitier, Poitiers, France. PhD Thesis.
  • Burgo, T. A. L., L. B. S. Balestrin, and F. Galembeck. 2014. Corona charging and potential decay on oxidized polyethylene surfaces. Polym. Degrad. Stabil. 104:11–17. doi:10.1016/j.polymdegradstab.2014.03.017.
  • Cashdollar, K. L., M. Hertzberg, and I. A. Zlochower 1989. Effect of volatility on dust flammability limits for coals, gilsonite, and polyethylene. Symposium (International) on Combustion, Colorado,22 (1),1757–65.
  • Chen, Z., and B. Fan. 2005. Flame propagation through aluminum particle cloud in a combustion tube. J. Loss Prev. Process Ind. 18 (1):13–19. doi:10.1016/j.jlp.2004.10.001.
  • Cheng, Y., X. Meng, H. Ma, S. Liu, Q. Wang, C. Shu, Z. Shen, W. Liu, S. Song, and F. Hua. 2018. Flame propagation behaviors and influential factors of TiH2 dust explosions at a constant pressure. Int. J. Hydrog. Energy 43 (33):16355–63. doi:10.1016/j.ijhydene.2018.06.145.
  • Dobashi, R., and K. Senda. 2006. Detailed analysis of flame propagation during dust explosions by UV band observations. J. Loss Prev. Process Ind. 19 (2–3):149–53. doi:10.1016/j.jlp.2005.06.040.
  • Eckhoff, R. K. 1992. Influence of initial and explosion-induced turbulence on dust explosions in closed and vented vessels research at CMI. Powder Technol. 71 (2):181–87. doi:10.1016/0032-5910(92)80007-J.
  • Gan, B., W. Gao, H. Jiang, Y. Li, Q. Zhang, and M. Bi. 2018a. Flame propagation behaviors and temperature characteristics in polyethylene dust explosions. Powder Technol. 328:345–57. doi:10.1016/j.powtec.2018.01.061.
  • Gan, B., B. Li, H. Jiang, D. Zhang, M. Bi, and W. Gao. 2018b. Ethylene/polyethylene hybrid explosions: Part 1. Effects of ethylene concentrations on flame propagations. J. Loss Prev. Process Ind. 54:93–102. doi:10.1016/j.jlp.2018.03.005.
  • Gan, B., B. Li, H. Jiang, D. Zhang, M. Bi, and W. Gao. 2018c. Ethylene/polyethylene hybrid explosions: Part 2. effects of polyethylene particle size distributions on flame propagations. J. Loss Prev. Process Ind. 55:134–43. doi:10.1016/j.jlp.2018.06.006.
  • Goroshin, S., M. Bidabadi, and J. H. Lee. 1996. Quenching distance of laminar flame in aluminum dust clouds. Combust. Flame 105 (1–2):147–60. doi:10.1016/0010-2180(95)00183-2.
  • Han, O., and J. Lee. 2014. Pyrolysis characteristic and ignition energy of high-density polyethylene powder. J. Korean Inst. Gas (Korean) 18 (3):31–37. doi:10.7842/kigas.2014.18.3.31.
  • Ji, W., X. Yan, H. Sun, X. Yu, and J. Yu. 2018. Comparative analysis of the explosibility of several different hybrid mixtures. Powder Technol. 325:42–48. doi:10.1016/j.powtec.2017.11.022.
  • Khalili, I., O. Dufaud, M. Poupeau, N. Cuervo-Rodriguez, and L. Perrin. 2012. Ignition sensitivity of gas–vapor/dust hybrid mixtures. Powder Technol. 217:199–206. doi:10.1016/j.powtec.2011.10.027.
  • McNeill, I. C., and M. H. Mohammed. 1995. A comparison of the thermal degradation behaviour of ethylene-ethyl acrylate copolymer, low density polyethylene and poly(ethyl acrylate). Polym. Degrad. Stabil. 48 (1):175–87. doi:10.1016/0141-3910(95)00030-P.
  • Moussa, R. B., C. Proust, M. Guessasma, K. Saleh, and J. Fortin. 2017. Physical mechanisms involved into the flame propagation process through aluminum dust-air clouds: A review. J. Loss Prev. Process Ind. 45:9–28. doi:10.1016/j.jlp.2016.11.010.
  • Pang, L., J. Cao, R. Ma, Y. Zhao, and K. Yang. 2021. Risk assessment method of polyethylene dust explosion based on explosion parameters. J. Loss Prev. Process Ind. 69:104397. doi:10.1016/j.jlp.2021.104397.
  • Pang, L., R. Ma, J. Gao, J. Li, A. Wang, and P. Lv. 2017. Effect of concentration of dust cloud on minimum ignition temperature of HDPE dust cloud. J. Saf. Sci. Technol. (Chinese) 13 (5):5–9.
  • Pang, L., R. Ma, S. Hu, P. Lv, and K. Yang. 2019a. Flame propagation of local LDPE dust cloud in a semi-open duct. Exp. Therm. Fluid Sci. 101:209–16. doi:10.1016/j.expthermflusci.2018.10.025.
  • Pang⁠⁠, L., Y. Zhao⁠, K. ⁠. Yang, H. Zhai⁠, P. Lv, and S. Sun. 2019b. Law of variation for low density polyethylene dust explosion with different inert gases. J. Loss Prev. Process Ind. 58:42–50.
  • Pang, Z., N. Zhu, Y. Cui, W. Li, and C. Xu. 2020. Experimental investigation on explosion flame propagation of wood dust in a semi-closed tube. J. Loss Prev. Process Ind. 63:104028. doi:10.1016/j.jlp.2019.104028.
  • Proust, C., and B. Veyssiere. 1988. Fundamental properties of flames propagating in starch dust-air mixtures. Combust. Sci. Technol. 62 (4–6):149–72. doi:10.1080/00102208808924007.
  • Proust, C. 1996. Dust explosions in pipes: A review. J. Loss Prev. Process Ind. 9 (4):267–77. doi:10.1016/0950-4230(96)00010-1.
  • Sheikholeslami, M., and A. Ghasemi. 2018. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int. J. Heat Mass Transfer 123:418–31. doi:10.1016/j.ijheatmasstransfer.2018.02.095.
  • Sheikholeslami, M., and H. B. Rokni. 2017. Nanofluid two phase model analysis in existence of induced magnetic field. Int. J. Heat Mass Transfer 107:288–199. doi:10.1016/j.ijheatmasstransfer.2016.10.130.
  • Stahmer, K. W., and M. Gerhold. 2017a. Study of the explosion reactions of sucrose, activated charcoal, polyethylene and lignite Part 1: Effect of variation in particle surface area upon explosion reaction. J. Loss Prev. Process Ind. 26:283–89. doi:10.1016/j.jlp.2017.02.010.
  • Stahmer, K. W., and M. Gerhold. 2017b. Study of the explosion reactions of sucrose, activated charcoal, polyethylene and lignite part 2: Study of the gas phase following the explosion reaction. J. Loss Prev. Process Ind. 48:216–22. doi:10.1016/j.jlp.2017.05.002.
  • Tan, F. 2005. Risk analysis and countermeasures of polyolefin dust explosion. Petrochem. Saf. Technol. (Chinese) 21:21–24.
  • Traoré, M., O. Dufaud, L. Perrin, S. Chazelet, and D. Thomas. 2009. Dust explosions: How should the influence of humidity be taken into account? Process saf. Environ. Prot. 87:14–20.
  • Wang, Y., C. Lin, Y. Qi, B. Pei, L. Wang, and W. Ji. 2020. Suppression of polyethylene dust explosion by sodium bicarbonate. Powder Technol. 367:206–12. doi:10.1016/j.powtec.2020.03.049.
  • Yang, K., J. Cao, Y. Zhao, L. Pang, and R. Ma. 2021. Inerting effect of N2 on explosion of LDPE dust/ethylene hybrid mixtures. J. Loss Prev. Process Ind. 70. doi:10.1016/j.jlp.2021.104431.
  • Yu, J., Y. Hou, X. Yan, J. Wen, X. Yu, and Y. Wang. 2019. Experimental study on flame propagation characteristic of polyethylene dust explosion under confined chamber. CIESC Journal (Chinese) 70 (3):1227–35.
  • Yu, J., W. Ji, H. Sun, X. Yan, and X. Yu. 2017. Explosibility of hybrid mixtures of ethylene and polyethylene dust. CIESC Journal (Chinese) 68 (12):4841–46.
  • Zhang, S., M. Bi, M. Yang, B. Gan, H. Jiang, and W. Gao. 2020. Flame propagation characteristics and explosion behaviors of aluminum dust explosions in a horizontal pipeline. Powder Technol. 359:172–80. doi:10.1016/j.powtec.2019.10.009.
  • Zhang, X., J. Yu, W. Gao, D. Zhang, J. Sun, S. Guo, and R. Dobashi. 2017. Effects of particle size distributions on PMMA dust flame propagation behaviors. Powder Technol. 317:197–208. doi:10.1016/j.powtec.2017.05.001.
  • Zhao, H. 1996. Principles of gas and dust explosion. Beijing Institute of Technology Press, Bejing.
  • Zhao, Y., W. Zhang, D. Feng, P. Wang, S. Sun, J. Wu, and P. Li. 2020. Experimental study of the flame propagation characteristics of pulverized coal in an O2/CO2 atmosphere. Fuel 262. doi:10.1016/j.fuel.2019.116678.
  • Zhou, Q., J. Hu, C. Liang, X. Chen, D. Liu, and J. Ma. 2019. Study on electric field distribution in cylindrical metal silo containing charged polyethylene powder. Powder Technol. 353:145–55. doi:10.1016/j.powtec.2019.05.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.