612
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Auto-Ignition and Numerical Analysis on High-Pressure Combustion of Premixed Methane-Air mixtures in Highly Preheated and Diluted Environment

, , , , &
Pages 3132-3154 | Received 12 Sep 2020, Accepted 24 Mar 2021, Published online: 19 Apr 2021

References

  • Arghode, V. K., and A. K. Gupta. 2011. Development of high intensity CDC combustor for gas turbine engines. Appl. Energy 88 (3):963. doi:10.1016/j.apenergy.2010.07.038.
  • Bechtel, J. H. 1979. Temperature measurements of the hydroxyl radical and molecular nitrogen in premixed, laminar flames by laser techniques. Appl. Opt. 18 (13):2100. doi:10.1364/AO.18.002100.
  • Bechtel, J. H., R. J. Blint, C. J. Dasch, and D. A. Weinberger. 1981. Atmospheric pressure premixed hydrocarbon-air flames: Theory and experiment. Combust. Flame 42:197. doi:10.1016/0010-2180(81)90158-9.
  • Burke, U., K. P. Somers, P. O’Toole, C. M. Zinner, N. Marquet, G. Bourque, E. L. Petersen, W. K. Metcalfe, Z. Serinyel, and H. J. Curran. 2015. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combust. Flame 162 (2):315. doi:10.1016/j.combustflame.2014.08.014.
  • Caron, M., M. Goethals, G. De Smedt, J. Berghmans, S. Vliegen, E. Van’t Oost, and A. Vanden Aarssen. 1999. Pressure dependence of the auto-ignition temperature of methane/air mixtures. J. Hazard. Mater. 65 (3):223. doi:10.1016/S0304-3894(99)00004-7.
  • Cavaliere, A., and M. De Joannon. 2004. Mild combustion. Prog. Energy Combust. Sci. 30 (4):329. doi:10.1016/j.pecs.2004.02.003.
  • Chen, Z., V. M. Reddy, S. Ruan, N. A. K. Doan, W. L. Roberts, and N. Swaminathan. 2017. Simulation of MILD combustion using Perfectly Stirred Reactor model. Proc. Combust. Inst. 36 (3):4279. doi:10.1016/j.proci.2016.06.007.
  • Christo, F. C., and B. B. Dally. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142 (1–2):117. doi:10.1016/j.combustflame.2005.03.002.
  • Dally, B. B., A. N. Karpetis, and R. S. Barlow. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29 (1):1147. doi:10.1016/S1540-7489(02)80145-6.
  • De Joannon, M., A. Cavaliere, R. Donnarumma, and R. Ragucci. 2002. Dependence of autoignition delay on oxygen concentration in mild combustion of high molecular weight paraffin. Proc. Combust. Inst. 29 (1):1139. doi:10.1016/S1540-7489(02)80144-4.
  • De Toni, A. R., M. Werler, R. M. Hartmann, L. R. Cancino, R. Schießl, M. Fikri, C. Schulz, A. A. M. Oliveira, E. J. Oliveira, and M. I. Rocha. 2017. Ignition delay times of Jet A-1 fuel: Measurements in a high-pressure shock tube and a rapid compression machine. Proc. Combust. Inst. 36 (3):3695. doi:10.1016/j.proci.2016.07.024.
  • Gupta, A., 2003. High temperature air combustion technology-invited review. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama. 4940.
  • Hu, E., X. Li, X. Meng, Y. Chen, Y. Cheng, Y. Xie, and Z. Huang. 2015. Laminar flame speeds and ignition delay times of methane–air mixtures at elevated temperatures and pressures. Fuel 158:1. doi:10.1016/j.fuel.2015.05.010.
  • Katsuki, M., and T. Hasegawa. 1998. The science and technology of combustion in highly preheated air. Proc. Combust. Inst. 27 (2):3135. doi:10.1016/S0082-0784(98)80176-8.
  • Khalil, A. E., and A. K. Gupta. 2011. Distributed swirl combustion for gas turbine application. Appl. Energy 88 (12):4898. doi:10.1016/j.apenergy.2011.06.051.
  • Khalil, A. E., and A. K. Gupta. 2018. Fostering distributed combustion in a swirl burner using prevaporized liquid fuels. Appl. Energy 211:513. doi:10.1016/j.apenergy.2017.11.068.
  • Kruse, S., B. Kerschgens, L. Berger, E. Varea, and H. Pitsch. 2015. Experimental and numerical study of MILD combustion for gas turbine applications. Appl. Energy 148:456. doi:10.1016/j.apenergy.2015.03.054.
  • Lückerath, R., W. Meier, and M. Aigner. 2008. FLOX® combustion at high pressure with different fuel compositions. Journ. Eng. Gas Turbines Power 130 (1). doi:10.1115/1.2749280.
  • Mao, Z., L. Zhang, X. Zhu, D. Zhou, W. Liu, and C. Zheng. 2017. Investigation on coal moderate or intense low-oxygen dilution combustion with high-velocity jet at pilot-scale furnace. Appl. Therm. Eng. 111:387. doi:10.1016/j.applthermaleng.2016.09.085.
  • Mardani, A., and H. K. M. Mahalegi. 2019. Hydrogen enrichment of methane and syngas for MILD combustion. Int. Journ. Hyd. Energ 44 (18):9423. doi:10.1016/j.ijhydene.2019.02.072.
  • Rafidi, N., W. Blasiak, and A. K. Gupta. 2008. High-temperature air combustion phenomena and its thermodynamics. Journ. Eng. Gas Turbines Pow. 130 (2):023001.
  • Reddy, V. M., P. Biswas, P. Garg, and S. Kumar. 2014. Combustion characteristics of biodiesel fuel in high recirculation conditions. Fuel Process. Technol. 118:310. doi:10.1016/j.fuproc.2013.10.004.
  • Reddy, V. M., A. Katoch, W. L. Roberts, and S. Kumar. 2015. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels. Proc. Combust. Inst. 35 (3):3581. doi:10.1016/j.proci.2014.05.070.
  • Robinson, C., and D. B. Smith. 1984. The auto-ignition temperature of methane. J. Hazard. Mater. 8 (3):199. doi:10.1016/0304-3894(84)85001-3.
  • Sabia, P., M. De Joannon, M. L. Lavadera, P. Giudicianni, and R. Ragucci. 2014. Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure. Combust. Flame 161 (12):3022. doi:10.1016/j.combustflame.2014.06.006.
  • Sabia, P., M. De Joannon, A. Picarelli, and R. Ragucci. 2013. Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure. Combust. Flame 160 (1):47. doi:10.1016/j.combustflame.2012.09.015.
  • Sabia, P., M. De Joannon, G. Sorrentino, P. Giudicianni, and R. Ragucci. 2015a. Effects of mixture composition, dilution level and pressure on auto-ignition delay times of propane mixtures. Chem. Eng. Journ. 277:324. doi:10.1016/j.cej.2015.04.143.
  • Sabia, P., M. L. Lavadera, P. Giudicianni, G. Sorrentino, R. Ragucci, and M. De Joannon. 2015b. CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions. Combust. Flame 162 (3):533. doi:10.1016/j.combustflame.2014.08.009.
  • Shao, J., R. Choudhary, D. F. Davidson, R. K. Hanson, S. Barak, and S. Vasu. 2019. Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm. Proc. Combust. Inst. 37 (4):4555. doi:10.1016/j.proci.2018.08.002.
  • Sidey, J., E. Mastorakos, and R. L. Gordon. 2014. Simulations of autoignition and laminar premixed flames in methane/air mixtures diluted with hot products. Combust. Sci. Technol 186 (4–5):453. doi:10.1080/00102202.2014.883217.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, et al., 2020. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech
  • Smith, T. F., Z. F. Shen, and J. N. Friedman. 1982. Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transfer 104 (4):602. doi:10.1115/1.3245174.
  • Steinle, J. U., and E. U. Franck. 1995. High pressure combustion–ignition temperatures to 1000 bar. Ber. Dtsch. Bot. Ges. 99:66.
  • Stephenson, D. A. 1979. Non-intrusive profiles of atmospheric premixed hydrocarbon-air flames. Symp. (Int.) Combust 17 (1):993. doi:10.1016/S0082-0784(79)80096-X.
  • Tu, Y., S. Xu, M. Xu, H. Liu, and W. Yang. 2020. Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm. Energy 197:117158. doi:10.1016/j.energy.2020.117158.
  • Wünning, J. A., J. G. Wünning, J. G. Wünning, and J. G. Wünning. 1997. Flameless oxidation to reduce thermal NO-formation. Progr. Energ. Combust. Sci 23 (1):81. doi:10.1016/S0360-1285(97)00006-3.
  • Ye, J., P. R. Medwell, E. Varea, S. Kruse, B. B. Dally, and H. G. Pitsch. 2015. An experimental study on MILD combustion of prevaporised liquid fuels. Appl. Energy 151:93. doi:10.1016/j.apenergy.2015.04.019.
  • Zeng, W., H. Ma, Y. Liang, and E. Hu. 2015. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture. Journ. Adv. Research 6 (2):189. doi:10.1016/j.jare.2014.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.