265
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Industrial-scale Investigations on Combustion Characteristics and NOx Emissions of a 300-MWe Down-fired Boiler: Bituminous Coal Combustion and Coal Varieties Comparison

, , , &
Pages 3155-3174 | Received 15 Dec 2020, Accepted 28 Mar 2021, Published online: 12 Apr 2021

References

  • Burdett, N. A. 1987. The effects of air staging on NOx emissions from a 500 MW down fired boiler. J. Inst. Energy. 60:103–07. doi:10.1016/0378-7753(87)80048-4.
  • Chen, Z. C., Q. X. Wang, B. N. Wang, L. Y. Zeng, M. M. Che, X. Zhang, and Z. Q. Li. 2017a. Anthracite combustion characteristics and NO x formation of a 300 MW e down-fired boiler with swirl burners at different loads after the implementation of a new combustion system. Appl. Energy. 189:133–41. doi:10.1016/j.apenergy.2016.12.063.
  • Chen, Z. C., Q. X. Wang, X. Y. Zhang, L. Y. Zeng, X. Zhang, T. He, T. Liu, and Z. Q. Li. 2017b. Industrial-scale investigations of anthracite combustion characteristics and NO emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners. Appl. Energy. 202:169–77. doi:10.1016/j.apenergy.2017.05.138.
  • Cheng, X. X., X. P. Wang, Z. Q. Wang, C. Y. Ma, and M. X. Wang. 2019. Investigation on NO reduction and CO formation over coal char and mixed iron powder. Fuel 245:52–64. doi:10.1016/j.fuel.2019.02.054.
  • Costa, M., and J. L. T. Azevedo. 2007. Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions. Combust. Sci. Technol 179 (9):1923–35. doi:10.1080/00102200701385042.
  • Eberle, J. S., J. A. Garcia-Mallol, and R. N. Simmerman. 2002. Advanced FW arch firing: NOx reduction in central power station. Proceedings of the Pittsburgh Coal Conference. Pittsburgh PA September. 23–27.
  • Fan, J. R., J. Jin, X. H. Liang, and K. F. Cen. 1998. Modeling of coal combustion and NOx formation in a W-shaped boiler furnace. Chem. Eng. J. 71 (3):233–42. doi:10.1016/S1385-8947(98)00130-2.
  • Fan, S. B., Z. Q. Li, X. H. Yang, G. K. Liu, and Z. C. Chen. 2010a. Influence of outer secondary-air vane angle on combustion characteristics and NOx emissions of a down-fired pulverized-coal 300-MWe utility boiler. Fuel 89 (7):1525–33. doi:10.1016/j.fuel.2009.09.014.
  • Fan, W., Z. Lin, Y. Li, J. Kuang, and M. Zhang. 2009. Effect of air-staging on anthracite combustion and NOx formation. Energy. Fuel 23 (1):111–20. doi:10.1021/ef800343j.
  • Fan, W. D., Z. C. Lin, Y. Y. Li, and M. C. Zhang. 2010b. Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology. Appl. Energy. 87 (8):2737–45. doi:10.1016/j.apenergy.2010.02.012.
  • Fang, Q. Y., H. J. Wang, H. C. Zhou, L. Lei, and X. L. Duan. 2010. Improving the performance of a 300 MW down-fired pulverized-coal utility boiler by inclining downward the F-layer secondary air. Energy. Fuel 24 (9):4857–65. doi:10.1021/ef1005868.
  • Feng, J. K., X. T. Shen, and R. C. Yang. 2003. Boiler principle and calculation. Beijing, China: Science Press.
  • Guo, L., M. Zhai, Z. T. Wang, Y. Zhang, and P. Dong. 2019. Comparison of bituminous coal and lignite during combustion: Combustion performance, coking and slagging characteristics. J. Energy. Inst. 92 (3):802–12. doi:10.1016/j.joei.2018.02.004.
  • Kuang, M., and Z. Q. Li. 2014a. Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers. Energy 69:144–78. doi:10.1016/j.energy.2014.03.055.
  • Kuang, M., Z. Q. Li, Z. Q. Ling, Z. F. Chen, and D. Y. Yuan. 2014b. Characterization of coal combustion and steam temperature with respect to staged-air angle in a 600 MWe down-fired boiler. Energy. Fuel. 28:4199–205. doi:10.1021/ef500587z.
  • Kuang, M., Z. Q. Li, C. L. Liu, and Q. Y. Zhu. 2013a. Experimental study on combustion and NOx emissions for a down-fired supercritical boiler with multiple-injection multiple-staging technology without overfire air. Appl. Energy. 106:254–61. doi:10.1016/j.apenergy.2013.01.072.
  • Kuang, M., Z. Q. Li, C. L. Liu, and Q. Y. Zhu. 2013b. Overall evaluation of combustion and NOx emissions for a down-fired 600 MWe supercritical boiler with multiple injection and multiple staging. Environ. Sci. Technol. 47 (9):4850–58. doi:10.1021/es304492j.
  • Kuang, M., Z. Q. Li, S. T. Xu, and Q. Y. Zhu. 2011. Improving combustion characteristics and NOx emissions of a down-fired 350 MWe utility boiler with multiple injection and multiple staging. Environ. Sci. Technol. 45 (8):803–3811. doi:10.1021/es103598f.
  • Li, Q. Z., C. S. Zhao, X. P. Chen, W. F. Wu, and Y. J. Li. 2009. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. J. Anal. Appl. Pyrol. 85 (1–2):521–28. doi:10.1016/j.jaap.2008.10.018.
  • Li, S., Z. C. Chen, E. He, B. K. Jiang, Z. Q. Li, and Q. X. Wang. 2017. Combustion characteristics and NO x formation of a retrofitted low-volatile coal-fired 330 MW utility boiler under various loads with deep-air-staging. Appl. Therm. Eng. 110:223–33. doi:10.1016/j.applthermaleng.2016.08.159.
  • Li, Z. Q., J. P. Jing, Z. C. Chen, F. Ren, B. Xu, H. D. Wei, and Z. H. Ge. 2008. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler. Combust. Sci. Technol 180 (7):1370–94. doi:10.1080/00102200802043318.
  • Li, Z. Q., G. K. Liu, Q. Y. Zhu, Z. C. Chen, and F. Ren. 2011a. Combustion and NOx emission characteristics of a retrofitted down-fired 660 MWe utility boiler at different loads. Appl. Energy. 88 (7):2400–06. doi:10.1016/j.apenergy.2011.01.048.
  • Li, Z. Q., F. Ren, Z. C. Chen, Z. Chen, and J. J. Wang. 2010b. Influence of declivitous secondary air on combustion characteristics of a down-fired 300-MWe utility boiler. Fuel 89 (2):410–16. doi:10.1016/j.fuel.2009.07.026.
  • Li, Z. Q., F. Ren, Z. C. Chen, G. K. Liu, and Z. X. Xu. 2010a. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler. Environ. Sci. Technol. 44 (10):3926–31. doi:10.1021/es1002378.
  • Li, Z. Q., F. Ren, G. K. Liu, S. P. Shen, and Z. C. Chen. 2011b. Influence of angled secondary air on combustion characteristics of a 660 MWe down-fired utility boiler. Combust. Sci. Technol. 183:38–251. doi:10.1016/j.fuel.2009.07.026.
  • Li, Z. Q., F. Ren, J. Zhang, X. H. Zhang, Z. C. Chen, and L. Z. Chen. 2007. Influence of vent air valve opening on combustion characteristics of a down-fired pulverized-coal 300-MWe utility boiler. Fuel 86 (15):2457–62. doi:10.1016/j.fuel.2007.01.035.
  • Liang, L., S. E. Hui, S. Zhao, Q. L. Zhou, T. M. Xu, and Q. X. Zhao. 2012. Cold modeling investigation of aerodynamic characteristics of an arch-fired boiler on particle image velocimetry (PIV): Influence of momentum flux ratio of arch air to secondary air and secondary air angle. Exp. Therm. Fluid. Sci. 42:240–47. doi:10.1016/j.expthermflusci.2012.05.009.
  • Ling, ZQ, B Ling, M Kuang, ZQ Li, and Y Lu. 2017. Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times. Appl. Energy. 187: 689–705. doi:10.1016/j.apenergy.2016.11.107
  • Liu, G. K., Z. Q. Li, Z. C. Chen, X. Y. Zhu, and Q. Y. Zhu. 2012. Effect of the anthracite ratio of blended coals on the combustion and NOx emission characteristics of a retrofitted down-fired 660-MWe utility boiler. Appl. Energy. 95:196–201. doi:10.1016/j.apenergy.2012.02.031.
  • Liu, H., Y. H. Liu, G. Z. Yi, L. Nie, and D. F. Che. 2013. Effects of air staging conditions on the combustion and NOx emission characteristics in a 600 MW wall fired utility boiler using lean coal. Energy Fuel 27 (10):831–5840. doi:10.1021/ef401354g.
  • Liu, P. Y., J. J. Gao, H. Zhang, D. L. Zhang, Y. X. Wu, M. Zhang, and J. F. Lu. 2017. Performance of the primary air concentrators on anthracite ignition and combustion in a 600 MW supercritical arch-fired boiler. Fuel Process Technol. 158:172–79. doi:10.1016/j.fuproc.2016.12.020.
  • Ma, L., Q. Y. Fang, D. Z. Lv, C. Zhang, Y. P. Chen, G. Chen, X. N. Duan, and X. H. Wang. 2015b. Reducing NOx emissions for a 600 MWe down-fired pulverized-coal utility boiler by applying a novel combustion system. Environ. Sci. Technol. 49 (21):13040–49. doi:10.1021/acs.est.5b02827.
  • Ma, L., Q. Y. Fang, D. Z. Lv, C. Zhang, Y. P. Chen, X. N. Duan, G. Chen, Y. P. Chen, and X. N. Duan. 2015a. Influence of separated overfire air ratio and location on combustion and NOx emission characteristics for a 600 MWe down-fired utility boiler with a novel combustion system. Energy. Fuel 29 (11):7630–40. doi:10.1021/acs.energyfuels.5b01569.
  • Ma, L., Q. Y. Fang, C. G. Yin, H. J. Wang, C. Zhang, and G. Chen. 2019. A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions. Appl. Energy. 238:453–65. doi:10.1016/j.apenergy.2019.01.084.
  • Mehmet, B., and K. Sait. 2016. Modeling of unburned carbon in fly ash and importance of size parameters. Fuel Process Technol. 143:7–17. doi:10.1016/j.fuproc.2015.10.039.
  • Song, M. H., L. Y. Zeng, Z. C. Chen, Z. Q. Li, Q. Y. Zhu, and M. Kuang. 2016. Industrial Application of an Improved Multiple Injection and Multiple Staging Combustion Technology in a 600 MWe Supercritical Down-Fired Boiler. Environ. Sci. Technol. 50 (3):1604–10. doi:10.1021/acs.est.5b03976.
  • Spitz, N., R. Saveliev, M. Perelman, E. Korytni, B. Chudnovsky, A. Talanker, and E. Bar-Ziv. 2008. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals. Fuel 87 (8–9):1534–42. doi:10.1016/j.fuel.2007.08.020.
  • Staiger, B., S. Unterberger, R. Berger, and K. R. G. Hein. 2005. Development of an air staging technology to reduce NOx emissions in grate fired boilers. Energy 30 (8):1429–38. doi:10.1016/j.energy.2004.02.013.
  • Ti, S. G., Z. C. Chen, Z. Q. Li, M. K., Q. Y. Zhu, L. Z. Chen, and Z. F. Wang. 2017. Effect of outer secondary air vane angles on combustion characteristics and NO emissions for centrally fuel rich swirl burner in a 600-MWe wall-fired pulverized-coal utility boiler. Appl. Therm. Eng. 125:951–62. doi:10.1016/j.applthermaleng.2017.05.180.
  • Ti, S. G., Z. C. Chen, Z. Q. Li, Y. Q. Xie, Y. L. Shao, Q. D. Zong, Q. H. Zhang, H. Zhang, L. Y. Zeng, and Q. Y. Zhu. 2014. Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600 MWe utility boiler. Energy 74:775–87. doi:10.1016/j.energy.2014.07.049.
  • Visona, S. P., and B. R. Stanmore. 1996a. Modeling NOx release form a single particle I. formation of NO form volatile nitrogen. Combust. Flame 105 (1–2):92–103. doi:10.1016/0010-2180(95)00169-7.
  • Visona, S. P., and B. R. Stanmore. 1996b. Modeling NOx release from a single coal particle II. formation of NO from char-nitrogen. Combust. Flame 106 (3):207–18. doi:10.1016/0010-2180(95)00257-X.
  • Wang, C. A., Y. H. Liu, X. M. Zhang, and D. F. Che. 2011. A study on coal properties and combustion characteristics of blended coals in northwestern China. Energy. Fuel 25 (8):3634–45. doi:10.1021/ef200686d.
  • Wang, J., S. Y. Zhang, X. Guo, A. X. Dong, C. Chen, S.-W. Xiong, Y.-T. Fang, and W.-D. Yin. 2012a. Thermal behaviors and kinetics of Pingshuo coal/biomass blends during copyrolysis and combustion. Energy. Fuel 26 (12):7120–26. doi:10.1021/ef301473k.
  • Wang, J. C., W. D. Fan, Y. Li, M. Xiao, K. Wang, and P. Ren. 2012b. The effect of air staged combustion on NOx emissions in dried lignite combustion. Energy 37 (1):725–36. doi:10.1016/j.energy.2011.10.007.
  • Wang, Q. X., Z. C. Chen, M. M. Che, L. Y. Zeng, Z. Q. Li, and M. H. Song. 2016. Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air. Appl. Energy. 182:29–38. doi:10.1016/j.apenergy.2016.08.127.
  • Wang, Q. X., Z. C. Chen, L. Wang, L. Y. Zeng, and Z. Q. Li. 2018. Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners. Appl. Energy. 223:358–68. doi:10.1016/j.apenergy.2018.04.064.
  • Wang, Y. Q., and Y. G. Zhou. 2020. Numerical optimization of the influence of multiple deep air-staged combustion on the NOx emission in an opposed firing utility boiler using lean coal. Fuel 269:116996. doi:10.1016/j.fuel.2019.116996.
  • Wen, D., Y. S. Yao, L. Li, M. G. Jeon, Q. L. Zhou, N. Li, and Y. Deguchi. 2019. Experimental study on the working states of membrane walls in the arch-fired boiler with different fuel proportion coefficients. Appl. Therm. Eng. 148:404–11. doi:10.1016/j.applthermaleng.2018.10.098.
  • Wu, H., M. Kuang, J. Wang, X. Zhao, G. Yang, S. Ti, and J. Ding. 2020. Lower-arch location effect on the flow field, coal combustion, and NO formation characteristics in a cascade-arch, down-fired furnace. Appl. Energy. 268: 115032. doi: 10.1016/j.apenergy.2020.115032.
  • Xu, M. X., S. Y. Li, Y. H. Wu, and L. F. Jia. 2017. Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters. Appl. Energy. 199:310–22. doi:10.1016/j.apenergy.2017.05.028.
  • Yang, W., B. Wang, S. Y. Lei, K. Wang, T. Chen, Z. J. Song, C. Ma, Y. D. Zhou, and L. S. Sun. 2019. Combustion optimization and NOx reduction of a 600 MWe down fired boiler by rearrangement of swirl burner and introduction of separated over-fire air. J. Clean. Prod. 210:1120–30. doi:10.1016/j.apenergy.2016.07.102.
  • Yin, C. G., and J. Y. Yan. 2016. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Appl. Energy. 162:742–62. doi:10.1016/j.apenergy.2015.10.149.
  • Zeng, G., Y. J. Zhao, Y. T. Cai, Z. M. Zheng, W. M. Yang, M. Xu, and W. Yang. 2020. Study on ignition behaviors of bias parallel pulverized coal streams in a reducing atmosphere: Influences of exit velocity. Fuel 268:117360. doi:10.1016/j.fuel.2020.117360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.