491
Views
3
CrossRef citations to date
0
Altmetric
Research Article

On the Quantification of Boundary Layer Effects on Flame Temperature Measurements Using Line-of-sight Absorption Spectroscopy

, , , & ORCID Icon
Pages 3259-3276 | Received 07 Dec 2020, Accepted 30 Apr 2021, Published online: 19 May 2021

References

  • Cantu, L. M., J. Grohmann, W. Meier, and M. Aigner. 2018. Temperature measurements in confined swirling spray flames by vibrational coherent anti-stokes Raman spectroscopy. Exp. Therm. Fluid Sci. 95:52–59. doi:10.1016/j.expthermflusci.2018.01.029.
  • Chatterjee, S., and Ö. L. Gülder. 2018. Soot concentration and primary particle size in swirl-stabilized non-premixed turbulent flames of ethylene and air. Exp. Therm. Fluid Sci. 95:73–80. doi:10.1016/j.expthermflusci.2018.01.035.
  • Cheong, K.-P., L. Ma, Z. Wang, and W. Ren. 2019. Influence of line pair selection on flame tomography using infrared absorption spectroscopy. Appl. Spectrosc. 73 (5):529–39. doi:10.1177/0003702818815181.
  • Farooq, A., J. B. Jeffries, and R. K. Hanson. 2008. In situ combustion measurements of H2 O and temperature near 2.5 µm using tunable diode laser absorption. . Measurement Science and Technology 19 (7):075604. doi:10.1088/0957-0233/19/7/075604.
  • Fu, P., L. Hou, Z. Wang, and X. Chao 2020. Multi-parameters measurements in kerosene-fuelled combustion using tunable diode laser absorption spectroscopy, China National Symposium on Combustion, Xiamen, China.
  • Goldenstein, C. S. 2014. Wavelength-modulation spectroscopy for determination of gas properties in hostile environments, Ph.D Dissertation, Stanford University.
  • Goldenstein, C. S., I. A. Schultz, J. B. Jeffries, and R. K. Hanson. 2013. Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Appl. Opt. 52 (33):7950–62. doi:10.1364/AO.52.007950.
  • Goldenstein, C. S., R. M. Spearrin, J. B. Jeffries, and R. K. Hanson. 2015. Infrared laser absorption sensors for multiple performance parameters in a detonation combustor. Proc. Combust. Inst. 35 (3):3739–47. doi:10.1016/j.proci.2014.05.027.
  • Goldenstein, C. S., R. M. Spearrin, J. B. Jeffries, and R. K. Hanson. 2017. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 60:132–76. doi:10.1016/j.pecs.2016.12.002.
  • Gordon, I., L. Rothman, C. Hill, R. Kochanov, Y. Tan, P. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance. 2017. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203:3–69. doi:10.1016/j.jqsrt.2017.06.038.
  • Guha, A., and I. Schoegl. 2014. Tomographic laser absorption spectroscopy using Tikhonov regularization. Appl. Opt. 53 (34):8095–103. doi:10.1364/AO.53.008095.
  • Hanson, R. K. 2011. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33 (1):1–40. doi:10.1016/j.proci.2010.09.007.
  • Hanson, R. K., R. M. Spearrin, and C. S. Goldenstein. 2016. Spectroscopy and optical diagnostics for gases. Switzerland: Springer.
  • Lee, J., C. Bong, J. Yoo, and M. S. Bak. 2020. Combined use of TDLAS and LIBS for reconstruction of temperature and concentration fields. Optics Express 28 (14):21121–33. doi:10.1364/OE.396909.
  • Letty, C., A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris. 2010. Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements. Experimental Thermal and Fluid Science 34 (3):338–45. doi:10.1016/j.expthermflusci.2009.10.018.
  • Li, S., A. Farooq, and R. K. Hanson. 2011. H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 µm. Measurement Science and Technology 22 (12):125301. doi:10.1088/0957-0233/22/12/125301.
  • Liu, C., and L. Xu. 2019. Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review. Appl. Spectrosc. Rev. 54 (1):1–44. doi:10.1080/05704928.2018.1448854.
  • Liu, C., L. Xu, F. Li, Z. Cao, S. A. Tsekenis, and H. McCann. 2015. Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner. Applied Physics B 120 (3):407–16. doi:10.1007/s00340-015-6150-9.
  • Liu, J. T., G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson. 2005. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Appl. Opt. 44 (31):6701–11. doi:10.1364/AO.44.006701.
  • Liu, X. 2006. Line-of-sight absorption of H2O vapour: Gas temperature sensing in uniform and nonuniform flows. Ph.D Dissertation, Stanford University.
  • Liu, X., G. Zhang, Y. Huang, Y. Wang, and F. Qi. 2018. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm. Applied Physics B 124 (4):61. doi:10.1007/s00340-018-6930-0.
  • Liu, X., J. B. Jeffries, and R. K. Hanson. 2007. Measurement of non-uniform temperature distributions using line-of-sight absorption spectroscopy. AIAA J. 45 (2):411–19. doi:10.2514/1.26708.
  • Ma, L., H. Ning, J. Wu, K.-P. Cheong, and W. Ren. 2018a. Characterization of temperature and soot volume fraction in laminar premixed flames: Laser absorption/extinction measurement and two-dimensional computational fluid dynamics modeling. Energy & Fuels 32 (12):12962–70. doi:10.1021/acs.energyfuels.8b03111.
  • Ma, L., H. Ning, J. Wu, and W. Ren. 2018b. In situ flame temperature measurements using a mid-infrared two-line H2O laser-absorption thermometry. Combustion Science and Technology 190 (3):393–408. doi:10.1080/00102202.2017.1392515.
  • Ma, L., K.-P. Cheong, H. Ning, and W. Ren. 2020. An improved study of the uniformity of laminar premixed flames using laser absorption spectroscopy and CFD simulation. Exp. Therm. Fluid Sci. 110013. doi:10.1016/j.expthermflusci.2019.110013.
  • Ma, L., Z. Wang, K.-P. Cheong, H. Ning, and W. Ren. 2019. Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements. Proc. Combust. Inst. 37 (2):1329–36. doi:10.1016/j.proci.2018.06.184.
  • Ma, L. H., L. Y. Lau, and W. Ren. 2017. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy. Applied Physics B 123 (3):83. doi:10.1007/s00340-017-6645-7.
  • Nau, P., J. Koppmann, A. Lackner, K. Kohse-Höinghaus, and A. Brockhinke. 2015. Quantum cascade laser-based MIR spectrometer for the determination of CO and CO 2 concentrations and temperature in flames. Appl. Phy. B. 118 (3):361–68. doi:10.1007/s00340-014-5992-x.
  • Peng, W. Y., C. L. Strand, and R. K. Hanson. 2020. Analysis of laser absorption gas sensors employing scanned-wavelength modulation spectroscopy with 1f-phase detection. Applied Physics B 126 (1):1–23. doi:10.1007/s00340-019-7369-7.
  • Peng, W. Y., C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, and R. K. Hanson. 2016. Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows. Appl. Opt. 55 (33):9347–59. doi:10.1364/AO.55.009347.
  • Peng, W. Y., S. J. Cassady, C. L. Strand, C. S. Goldenstein, R. M. Spearrin, C. M. Brophy, J. B. Jeffries, and R. K. Hanson. 2019. Single-ended mid-infrared laser-absorption sensor for time-resolved measurements of water concentration and temperature within the annulus of a rotating detonation engine. Proc. Combust. Inst. 37 (2):1435–43. doi:10.1016/j.proci.2018.05.021.
  • Qu, Z., O. Werhahn, and V. Ebert. 2018. Thermal boundary layer effects on line-of-sight tunable diode laser absorption spectroscopy (TDLAS) gas concentration measurements. Appl. Spectrosc. 72 (6):853–62. doi:10.1177/0003702817752112.
  • Qu, Z., R. Ghorbani, D. Valiev, and F. M. Schmidt. 2015. Calibration-free scanned wavelength modulation spectroscopy – Application to H2O and temperature sensing in flames. Optics Express 23 (12):16492–99. doi:10.1364/OE.23.016492.
  • Sanders, S. T., J. Wang, J. B. Jeffries, and R. K. Hanson. 2001. Diode-laser absorption sensor for line-of-sight gas temperature distributions. Appl. Opt. 40 (24):4404–15. doi:10.1364/AO.40.004404.
  • Schoenung, M., and R. K. Hanson. 1980. CO and temperature measurements in a flat flame by laser ab orption spectroscopy and probe techniques. . Combustion Science and Technology 24 (5–6):227–37. doi:10.1080/00102208008952442.
  • Sepman, A., Y. Ögren, Z. Qu, H. Wiinikka, and F. M. Schmidt. 2017. Real-time in situ multi-parameter TDLAS sensing in the reactor core of an entrained-flow biomass gasifier. Proc. Combust. Inst. 36 (3):4541–48. doi:10.1016/j.proci.2016.07.011.
  • Wagner, S., M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, and V. Ebert. 2012. Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS. Appl. Phy. B. 109 (3):533–40. doi:10.1007/s00340-012-5242-z.
  • Wang, F., Q. Wu, Q. Huang, H. Zhang, J. Yan, and K. Cen. 2015. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology. Opt. Commun. 346:53–63. doi:10.1016/j.optcom.2015.02.015.
  • Wang, Z., P. Fu, L. Hou, and X. Chao. 2020. Diffuse-reflection-based single-ended laser absorption sensor for H2O temperature and concentration in kerosene-fuelled combustor. Measurement Science and Technology 31 (10):105202. doi:10.1088/1361-6501/ab803b.
  • Wei, C., D. I. Pineda, L. Paxton, F. N. Egolfopoulos, and R. M. Spearrin. 2018. Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames. Applied Physics B 124 (6):123. doi:10.1007/s00340-018-6984-z.
  • Wu, Q., F. Wang, M. Li, J. Yan, and K. Cen. 2017. Simultaneous in-situ measurement of soot volume fraction, H2O concentration, and temperature in an ethylene/air premixed flame using tunable diode laser absorption spectroscopy. Combustion Science and Technology 189 (9):1571–90. doi:10.1080/00102202.2017.1308358.
  • Xia, H., R. Kan, Z. Xu, Y. He, J. Liu, B. Chen, C. Yang, L. Yao, M. Wei, and G. Zhang. 2017. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform. Optics and Lasers in Engineering 90:10–18. doi:10.1016/j.optlaseng.2016.09.005.
  • Yu, X., F. Li, L. Chen, and X. Zhang. 2010. Spatial resolved temperature measurement based on absorption spectroscopy using a single tunable diode laser. Acta Mechanica Sinica 26 (1):147–49. doi:10.1007/s10409-009-0296-9.
  • Zeng, H., F. Li, X. Yu, D. Ou, and L. Chen. 2018. Measurement of multispecies concentration and gas temperature in an ammonium-dinitramide-based thruster by tunable diode lasers. Appl. Opt. 57 (6):1321–30. doi:10.1364/AO.57.001321.
  • Zhang, G., J. Liu, Z. Xu, Y. He, and R. Kan. 2016. Characterization of temperature non-uniformity over a premixed CH4–air flame based on line-of-sight TDLAS. Applied Physics B 122 (1):3. doi:10.1007/s00340-015-6289-4.
  • Zhou, B., C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai. 2015. Distributed reactions in highly turbulent premixed methane/air flames: Part I. Flame structure characterization. Combustion and Flame 162 (7):2937–53. doi:10.1016/j.combustflame.2014.12.021.
  • Zhou, X. 2005, Diode-laser absorption sensors for combustion control, Ph.D Dissertation, Stanford University.
  • Zhou, X., X. Liu, J. B. Jeffries, and R. K. Hanson. 2003. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Measurement Science and Technology 14 (8):1459–68. doi:10.1088/0957-0233/14/8/335

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.