165
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of Chopped Carbon Fibers on a Novel Mechanical Enhanced Micro-porous Propellants

ORCID Icon, , , , &
Pages 3277-3293 | Received 06 Jan 2021, Accepted 30 Apr 2021, Published online: 12 May 2021

References

  • Böhnlein‐Mauß, J., A. Eberhardt, and T. S. Fischer. 2002. Foamed propellants. Propellants Explos. Pyrotech. 27 (3):156–60. doi:10.1002/1521-4087(200206)27:3<156::AID-PREP156>3.0.CO;2-P.
  • Böhnlein-Mauß, J., and H. Kröber. 2010. Technology of foamed propellants. Propellants Explos. Pyrotech. 34 (3):239–44. doi:10.1002/prep.200800113.
  • Cao, M., C. Zhang, and J. Wei. 2013. Microscopic reinforcement for cement based composite materials. Constr. Build. Mater. 40:14–25. doi:10.1016/j.conbuildmat.2012.10.012.
  • Colton, J. S., and N. P. Suh. 2010. Nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polym Eng Sci. Polym. Eng. Sci. 27 (7):485–92. doi:10.1002/pen.760270702.
  • Cui, Y., C. Liu, S. Hu, and X. Yu. 2011. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Solar Energy Mater. Solar Cells. 95(4):1208–12. doi:10.1016/j.solmat.2011.01.021.
  • Deqing, W. 2013. Relation of cell uniformity and mechanical property of a close cell aluminum foam. Adv Eng Mater 15 (3):175–79. doi:10.1002/adem.201200135.
  • Feldman, D. 2010. Handbook of polymeric foams and foam technology, by D. Klepner and K. C. Frisch (editors), hanser publishers, Munich, 442 pp. D. M. 228.00. J. Polym. Sci. B Polym. Phys. 31:7.
  • Gao XQ, Guo QG, Shi JL, Li GS, Song JR and Liu L. 2005. The fabrication of chopped carbon fiber-carbon composites and their thermal/electrical conductivity and microstructure. New Carbon Mater. 20 (1):18–22.
  • Gu H, Ding YJ, Xiao ZL, Ying SJ and Wu WL. 2020. A novel method for oblate spherical powder with adjustable combustion property. J. Phys. Conf. Ser. 1507:022007. doi:10.1088/1742-6596/1507/2/022007.
  • Han X, Wang TF, Lin ZK, Han DL, Li SF, Zhao FQ and Zhang LY. 2009. RDX/AP-CMDB propellants containing fullerenes and carbon black additives. Defence Ence J. 59(3):284–93. doi:10.14429/dsj.59.1522.
  • Jacob GC, Starbuck JM, Fellers JF and Simunovic S. 2005. Effect of fiber volume fraction, fiber length and fiber tow size on the energy absorption of chopped carbon fiber–polymer composites. Polym. Compos. 26(3):293–305. doi:10.1002/pc.20100.
  • Jianwei, L., G. Zhang, J. A. Fedchak, J. Scherschligt, M. Bible, B. Natarajan, N. N. Klimov, A. E. Miller, Z. Ahmed, M. R. Hartings, et al. 2017. Preparation and properties of polyimide/chopped carbon fiber composite foams. Polym. Adv. Technol. 29(2):867–73. doi:10.1002/pat.4197.
  • Jin, F. L., and S. J. Park. 2015. Preparation and characterization of carbon fiber-reinforced thermosetting composites: A review. Carbon Lett. 16 (2):67–77. doi:10.5714/CL.2015.16.2.067.
  • Kim, D. H. and C. G. Park. 2013. Strength, permeability, and durability of hybrid fiber-reinforced concrete containing styrene butadiene latex. J. Appl. Polym. Sci. 129(3):1499–505. doi:10.1002/app.38861.
  • Kim, J. H., H. I. Lee, and Y. S. Lee. 2017. The enhanced thermal and mechanical properties of graphite foams with a higher crystallinity and apparent density. Mater. Sci. Eng. A 696 ( JUN.1):174–81. doi:10.1016/j.msea.2017.04.071.
  • Li, Y., W. Yang, and S. Ying. 2015a. Preparation and characteristics of foamed NC-based propellants. Propellants Explos. Pyrotech. 39 (5):677–83. doi:10.1002/prep.201300151.
  • Li, Y., W. Yang, and S. Ying. 2015b. The effects of porous structure on the burning characteristics of foamed NC-based gun propellants. Propellants Explos. Pyrotech. 39 (6):852–58. doi:10.1002/prep.201400022.
  • Li Y, Yang W, Ying S and Peng J. 2015c. Combustion of gas-permeable gun propellants. J. Energetic Mater. 33(3):167–79. doi:10.1080/07370652.2014.955618.
  • Lin T, Jia D, He P, Wang M and Liang D. 2008. Effects Of Fiber Length On Mechanical Properties And Fracture Behavior Of Short Carbon Fiber Reinforced Geopolymer Matrix Composites. Materials Science and Engineering. 497, 181-5.
  • Lobanov, I. N., and V. M. Shmelev. 2007. Effect of carbon fiber on the burning rate of model propellants. Russ. J. Phys. Chem. B Focus Phys. 1 (5):500–01.
  • Ma ZL, Tian SM, Liu YP and Xiao ZL. 2008. Effects of fiber on sensitivity and spontaneous combustion of caseless ammunition.Chinese Journal of Energetic Materials. 16.2, 201-3.
  • MingLI, MengLIU, YuanyiYANG, ZaoyuanLI and XiaoyangGUO. 2015. Mechanical properties of oil well cement stone reinforced with hybrid fiber of calcium carbonate whisker and carbon fiber. Pet. Explor. Dev. 42(1):104–11. doi:10.1016/S1876-3804(15)60012-X.
  • Naya, T., and M. Kohga. 2014. Influences of particle size and content of RDX on burning characteristics of RDX-based propellant. Aerosp. Ence Technol. 32 (1):26–34. doi:10.1016/j.ast.2013.12.004.
  • Neidert, J. B., and R. E. Askins 1994. Russian. Castable double base propellant containing ultra fine carbon fiber as a ballistic modifier.
  • Nielson, D. B., and D. M. Lester 1993. US. Use of carbon fibrils to enhance burn rate of pyrotechnics and gas generants.
  • Oyumi, Y., and T. B. Brill. 1986. Thermal decomposition of energetic materials 14. Selective product distributions evidenced in rapid, real-time thermolysis of nitrate esters at various pressures. Combust. Flame 66 (1):9–16. doi:10.1016/0010-2180(86)90028-3.
  • Shalumon KT, Chennazhi KP, Nair SV and Jayakumar R. 2013. High thick layer-by-layer 3D multiscale fibrous scaffolds for enhanced cell infiltration and it’s potential in tissue engineering. J. Biomed. Nanotechnol. 9(12):2117–22. doi:10.1166/jbn.2013.1702.
  • Shen J, Liu Z, Xu B, Liang H, Zhu Y, Liao X and Wang Z. 2019. Influence of Carbon Nanofibers on Thermal and Mechanical Properties of NC-TEGDN-RDX Triple-Base Gun Propellants.Propellants Explosives Pyrotechnics. 44, 355-61.
  • Wang X, Luo R, Ni Y, Zhang R and Wang S.  Wang, et al. 2009. Properties of chopped carbon fiber reinforced carbon foam composites. Mater. Lett. 63(1):25–27. doi:10.1016/j.matlet.2008.08.036.
  • Wiegand, D. A., S. Nicolaides, and J. Pinto. 1990. Mechanical and thermomechanical properties of NC base propellants. J. Energetic Mater. 8 (5):442–61. doi:10.1080/07370659008225433.
  • Xiao, Y. D. S. Z. S. Y. Z. 2019. Fabrication and combustion properties of TEGN/RDX based microcellular combustible objects. Chin. J. Explos. Propellants 42 (4):335–40.
  • Xu ZM, Jiang XL, Tao L, Hu GH, Zhao L, Zhu ZN and Yuan WK. 2007. Foaming of polypropylene with supercritical carbon dioxide. J. Supercrit. Fluids. 41(2):299–310. doi:10.1016/j.supflu.2006.09.007.
  • Yan QL, Zhao FQ, Kuo KK, Zhang XH, Zeman S and Deluca LT. 2016. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci. 57 (v.):75–136.
  • Qi-LongYan, MichaelGozin, Feng-QiZhao, AdvaCohen and Si-PingPang. 2016. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale. 8(9), 4799-851.
  • 2016. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites. Ceram. Int. 42(6):7837–43. doi:10.1016/j.ceramint.2016.01.197.
  • Yang, W., L. I. Yuxiang, and S. Ying. 2014. An investigation of the preparation and performance of microcellular combustible material. Central Eur. J. Energetic Mater. 11 (2):257–69.
  • Yi JH, Zhao FQ, Ren YH, Wang BZ, Zhou C, Ren XN, Xu SY, Hao HX and Hu RZ. 2011. BTATz-CMDB propellantsHigh-pressure thermal properties and their correlation with burning rates. J. Therm. Anal. Calorim. 104(3):1029–36. doi:10.1007/s10973-010-1258-y.
  • Ying, S., X. Chen, and Y. Luo. 2012. Process of microcellular propellants with adjustable skin thickness. Defence Technol. 9 (1):53–57. doi:10.1016/j.dt.2013.10.002.
  • Zhao, F. Q., P. Chen, and S. W. Li. 2004. Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant. Thermochim. Acta 416 (1):75–78. doi:10.1016/j.tca.2003.11.034.
  • Zhou Z, Xu M, Yang Z, Li X and Shao D. 2014. Effect of maleic anhydride grafted polyethylene on the properties of chopped carbon fiber/wood plastic composites. J. Rnforced Plast. Compos. 33(13):1216–25. doi:10.1177/0731684414531633.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.