354
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on Explosion Characteristics of Ultra-Low Concentration Methane Mixed with Dimethyl Ether

ORCID Icon, , , , , , & show all
Pages 3294-3317 | Received 23 Jan 2021, Accepted 29 Apr 2021, Published online: 24 May 2021

References

  • Abdelhafez, A., S. S. Rashwan, M. A. Nemitallah, and M. A. Habib. 2018. Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor. Appl Energ 215:63–74. doi:10.1016/j.apenergy.2018.01.097.
  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017. The flame deflagration of hybrid methane coal dusts in a large-scale detonation tube (LSDT). Fuel 194:491–502. doi:10.1016/j.fuel.2017.01.038.
  • Azizi, Z., M. Rezaeimanesh, T. Tohidian, and M. R. Rahimpour. 2014. Dimethyl ether: A review of technologies and production challenges. Chem. Eng. Process. 82:150–72. doi:10.1016/j.cep.2014.06.007.
  • Bai, C., G. Gong, Q. Liu, Y. Chen, and G. Niu. 2011. The explosion overpressure field and flame propagation of methane/air and methane/coal dust/air mixtures. Safety Sci. 49 (10):1349–54. doi:10.1016/j.ssci.2011.05.005.
  • Basic Energy Sciences Workshop. 2007. Basic energy needs for clean and efficient combustion of 21st century transportation fuels. US Dept. of Energy.
  • Bolshova, T., V. Shvartsberg, A. Dmitriev, and D. Knyazkov. 2019. Flame structure and a compact reaction mechanism for combustion of dimethyl ether at atmospheric pressure. Fuel 255:115752. doi:10.1016/j.fuel.2019.115752.
  • Dai, P., Z. Chen, and S. Y. Chen. 2014. Ignition of methane with hydrogen and dimethyl ether addition. Fuel 118:1–8. doi:10.1016/j.fuel.2013.10.048.
  • Daly, C. A., J. M. Simmie, J. Würmel, N. Djebaili, and C. Paillard. 2001. Burning velocities of dimethyl ether and air. Combust. Flame. 125 (4):1329–40. doi:10.1016/S0010-2180(01)00249-8.
  • De, V. J., W. B. Lowry, Z. Serinyel, H. J. Curran, and E. L. Petersen. 2011. Laminar flame speed measurements of dimethyl ether in air at pressures up to 10atm. Fuel 90 (1):331–38. doi:10.1016/j.fuel.2010.07.040.
  • De Vries, H., A. V. Mokhov, and H. B. Levinsky. 2017. The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances. Appl. Energ. 208:1007–19. doi:10.1016/j.apenergy.2017.09.049.
  • Duv, B. C., L. E. Chance, and E. Toulson. 2020. Dilution effect of different combustion residuals on laminar burning velocities and burned gas Markstein lengths of premixed methane/air mixtures at elevated temperature. Fuel 267:117153. doi:10.1016/j.fuel.2020.117153.
  • El-Din, H. A., M. Elkelawy, and A. E. Kabeel. 2017. Study of combustion behaviors for dimethyl ether as an alternative fuel using CFD with detailed chemical kinetics. Alex. Eng. J. 56 (4):709–19. doi:10.1016/j.aej.2017.08.012.
  • Gu, X. J., M. Z. Haq, M. Lawes, and R. Woolley. 2000. Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame 121 (1–2):41–58. doi:10.1016/S0010-2180(99)00142-X.
  • Huang, Z. H., Q. Wang, J. R. Yu, Y. Zhang, K. Zeng, H. Y. Miao, and D. Jiang. 2007. Measurement of laminar burning velocity of dimethyl ether–air premixed mixtures. Fuel 86 (15):2360–66. doi:10.1016/j.fuel.2007.01.021.
  • Jeon, J., S. I. Kwon, Y. H. Park, Y. J. Oh, and S. Park. 2014. Visualizations of combustion and fuel/air mixture formation processes in a single cylinder engine fueled with DME. Appl. Energ. 113:294–301. doi:10.1016/j.apenergy.2013.07.033.
  • Jin, T., Y. C. Wu, X. J. Wang, K. H. Luo, T. F. Lu, K. Luo, and J. R. Fan. 2019. Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames. Appl. Energ. 249:343–54. doi:10.1016/j.apenergy.2019.04.161.
  • Kang, Y. H., Q. Wang, P. Y. Zhang, C. C. Liu, X. F. Lu, and Q. H. Wang. 2020. Study on flame structure and extinction mechanism of dimethyl ether spherical diffusion flames. Energy 193:116786. doi:10.1016/j.energy.2019.116786.
  • Kang, Y. H., Q. H. Wang, X. F. Lu, X. Y. Ji, H. Wang, Q. Guo, Y. Chen, J. Yan, and J. L. Zhou. 2015b. Experimental and theoretical study on radiative heat transfer characteristics of dimethyl ether jet diffusion flame. Fuel 158:684–96. doi:10.1016/j.fuel.2015.06.015.
  • Kang, Y. H., W. Shuang, X. C. Jiang, Y. F. Song, S. C. Sun, P. Y. Zhang, Y. M. Sun, X. F. Lu, Q. H. Wang, X. L. Gou, et al. 2017. Study on effect of dimethyl ether addition on combustion characteristics of turbulent methane/air jet diffusion flame. Fuel. Process. Technol. 159:421–35. doi:10.1016/j.fuproc.2017.02.008.
  • Kang, Y.H., Q.H. Wang, X.F. Lu, X.Y. Ji, S.S. Miao, H. Wang, Q. Guo, H.H. He, and J. Xu. 2015a. Experimental and theoretical study on the flow, mixing, and combustion characteristics of dimethyl ether, methane, and LPG jet diffusion flames. Fuel. Process. Technol. 129:98–112. doi:10.1016/j.fuproc.2014.09.004.
  • Karakurt, I., G. Aydin, and K. Aydiner. 2011. Mine ventilation air methane as a sustainable energy source. Renew. Sust. Energ. Rev. 15 (2):1042–49. doi:10.1016/j.rser.2010.11.030.
  • Karyeyen, S. 2018. Combustion characteristics of a non-premixed methane flame in a generated burner under distributed combustion conditions: A numerical study. Fuel 230:163–71. doi:10.1016/j.fuel.2018.05.052.
  • Knyazkov, D. A., T. A. Bolshova, V. M. Shvartsberg, I. E. Gerasimov, A. G. Shmakov, and O. P. Korobeinichev. 2019. Effect of inhibitors on flammability limits of dimethyl ether/air mixtures. P. Combust. Inst. 37 (3):4267–75. doi:10.1016/j.proci.2018.06.109.
  • Kundu, S. K., J. Zanganeh, D. Eschebach, and B. Moghtaderi. 2018. Explosion severity of methane–coal dust hybrid mixtures in a ducted spherical vessel. Powder. Technol. 323:95–102. doi:10.1016/j.powtec.2017.09.041.
  • Lerner, A., M. J. Brear, J. S. Lacey, R. L. Gordon, and P. A. Webley. 2018. Life cycle analysis (LCA) of low emission methanol and di-methyl ether (DME) derived from natural gas. Fuel 220:871–78. doi:10.1016/j.fuel.2018.02.066.
  • Li, J. M., A. K. Tang, T. Cai, and C. Zhou. 2020. Effect of dimethyl ether addition on flame stability of premixed methane/air in a micro-planar quartz combustor. Chem. Eng. Process 147:107740. doi:10.1016/j.cep.2019.107740.
  • Li, Q. Z., B. Q. Lin, D. S. Yuan, and G. M. Chen. 2015. Demonstration and its validation for ventilation air methane (VAM) thermal oxidation and energy recovery project. Appl. Therm. Eng. 90:75–85. doi:10.1016/j.applthermaleng.2015.06.089.
  • Lowry, W. B., Z. Serinye, M. C. Krejci, H. J. Curran, G. Bourque, and E. L. Petersen. 2011. Effect of methane-dimethyl ether fuel blends on flame stability, laminar flame speed, and Markstein length. P. Combust. Inst. 33 (1):929–37. doi:10.1016/j.proci.2010.05.042.
  • Lu, L. X., C. Zou, Q. J. Lin, Y. Liu, and H. X. Jing. 2020. Experimental and simulated study on the ignition delay time of dimethyl ether/n-heptane/oxygen/argon mixtures. Fuel 264:116812. doi:10.1016/j.fuel.2019.116812.
  • Mohammad, A., and K. A. Juhany. 2019. Laminar burning velocity and flame structure of DME/methane + air mixtures at elevated temperatures. Fuel 245:105–14. doi:10.1016/j.fuel.2019.02.085.
  • Narvaez, A., D. Chadwick, and L. Kershenbaum. 2019. Performance of small-medium scale polygeneration systems for dimethyl ether and power production. Energy 188:116058. doi:10.1016/j.energy.2019.116058.
  • Nie, B. S., C. Peng, J. Gong, F. F. Yin, and K. D. Wang. 2021. Explosion characteristics and energy utilisation of coal mine ultra-lean methane. Combust. Theor. Model. 25 (1):73–95. doi:10.1080/13647830.2020.1833085.
  • Nie, B. S., J. Gong, L. L. Yang, C. Peng, and F. B. Wang. 2021. Experimental investigations on explosion characteristics of different ranks coal dust in Horizontal Pipeline. Combust. Sci. Technol 1–17.
  • Nie, B. S., X. Q. He, C. Wang, H. Q. Lu, and F. Xue. 2015. Computational method of the propagation velocity of methane explosion flame based on correlation coefficient of images. Combust. Sci. Technol. 187 (8):1157–66. doi:10.1080/00102202.2015.1019621.
  • Özgen Karacan, C., F. A. Ruiz, M. Cotè., and S. Phipps. 2011. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal . Geol. 86 (2–3):121–56. doi:10.1016/j.coal.2011.02.009.
  • Panigrahy, S., and S. C. Mishra. 2018. The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application. Energy 150:176–89. doi:10.1016/j.energy.2018.02.121.
  • Park, S. H., and C. S. Lee. 2014. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energ. Convers. Manage. 86:848–63. doi:10.1016/j.enconman.2014.06.051.
  • Pizzuti, L., C. Martins, L. R. Santos, and D. Guerra. 2017. Laminar burning velocity of methane/air mixtures and flame propagation speed close to the chamber wall. Energ. Procedia 120:126–33. doi:10.1016/j.egypro.2017.07.145.
  • Porras, S., D. Kaczmarek, J. Herzler, S. Drost, M. Werler, T. Kasper, M. Fikri, R. Schießl, B. Atakan, C. Schulz, et al. 2020. An experimental and modeling study on the reactivity of extremely fuel-rich methane/dimethyl ether mixtures. Combust. Flame 212:107–22. doi:10.1016/j.combustflame.2019.09.036.
  • Qin, X., and Y. Ju. 2005. Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures. Proc. Combust. Inst. 30 (1):233–40. doi:10.1016/j.proci.2004.08.251.
  • Rashwan, S. S., A. H. Ibrahim, T. W. Abou-Arab, M. A. Nemitallah, and M. A. Habib. 2016. Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner. Appl. Energ. 169:126–37. doi:10.1016/j.apenergy.2016.02.047.
  • Rozenchan, G., D. L. Zhu, C. K. Law, and S. D. Tse. 2002. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm. Proc. Combust. Inst. 29 (2):1461–70. doi:10.1016/S1540-7489(02)80179-1.
  • Salvi, B. L., K. A. Subramanian, and N. L. Panwar. 2013. Alternative fuels for transportation vehicles: A technical review. Renew. Sust. Energ. Rev. 25:404–19. doi:10.1016/j.rser.2013.04.017.
  • Shah, K., B. Moghtaderi, E. Doroodchi, and J. Sandford. 2015. A feasibility study on a novel stone dust looping process for abatement of ventilation air methane. Fuel. Process. Technol. 140:285–96. doi:10.1016/j.fuproc.2015.07.031.
  • Sun, X. X., and S. X. Lu. 2020. On the mechanisms of flame propagation in methane-air mixtures with concentration gradient. Energy 202:117782. doi:10.1016/j.energy.2020.117782.
  • Tahtouh, T., F. Halter, and C. Mounaïm-Rousselle. 2009. Measurement of laminar burning speeds and Markstein lengths using a novel methodology. Combust. Flame 156 (9):1735–43. doi:10.1016/j.combustflame.2009.03.013.
  • Therrien, R. J., A. Ergut, Y. A. Levendis, H. Richter, J. B. Howard, and J. B. Carlson. 2010. Investigation of critical equivalence ratio and chemical speciation in flames of ethylbenzene–ethanol blends. Combust. Flame 157 (2):296–312. doi:10.1016/j.combustflame.2009.07.023.
  • Wang, C., F. Huang, E. K. Addai, and X. Dong. 2016. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture. J. Loss. Prevent. Proc. 43:302–10. doi:10.1016/j.jlp.2016.05.021.
  • Wang, Y., S. Jiang, Z. Wu, H. Shao, K. Wang, and L. Wang. 2018. Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. J. Loss. Prevent. Proc. 56:451–57. doi:10.1016/j.jlp.2018.09.009.
  • Yamamoto, Y., and T. Tachibana. 2018. Burning velocities of dimethyl ether (DME)–nitrous oxide (N2O) mixtures. Fuel 217:160–65. doi:10.1016/j.fuel.2017.12.067.
  • Yu, H. B., E. J. Hu, Y. Cheng, X. Y. Zhang, and Z. H. Huang. 2014. Experimental and numerical study of laminar premixed dimethyl ether/methane–air flame. Fuel 136:37–45. doi:10.1016/j.fuel.2014.07.032.
  • Zhang, B., and H. D. Ng. 2015. Explosion behavior of methane–dimethyl ether/air mixtures. Fuel 157:56–63. doi:10.1016/j.fuel.2015.04.058.
  • Zhang, B., and H. D. Ng. 2016. An experimental investigation of the explosion characteristics of dimethyl ether-air mixtures. Energy 107:1–8. doi:10.1016/j.energy.2016.03.125.
  • Zhang, S. L., M. S. Bi, M. R. Yang, B. Gan, H. P. Jiang, and W. Gao. 2020. Flame propagation characteristics and explosion behaviors of aluminum dust explosions in a horizontal pipeline. Powder. Technol. 359:172–80. doi:10.1016/j.powtec.2019.10.009.
  • Zhao, Z., A. Kazakov, and F. L. Dryer. 2004. Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry. Combust. Flame. 139 (1–2):52–60. doi:10.1016/j.combustflame.2004.06.009.
  • Zheng, B., Y. Q. Liu, R. X. Liu, and J. Meng. 2015. Catalytic oxidation of coal mine ventilation air methane in a preheat catalytic reaction reactor. Int. J. Hydrogen. Energ. 40 (8):3381–87. doi:10.1016/j.ijhydene.2015.01.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.