252
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigations on Non-premixed Methane-air Flames in Radial Microchannels with a Controlled Temperature Profile

, , ORCID Icon & ORCID Icon
Pages 3318-3339 | Received 18 Feb 2021, Accepted 29 Apr 2021, Published online: 23 May 2021

References

  • Chen, X., J. Li, M. Feng, D. Zhao, B. Shi, and N. Wang. 2019. Flame stability and combustion characteristics of liquid fuel in a meso-scale burner with porous media. Fuel 251:249–59. doi:10.1016/j.fuel.2019.04.011.
  • Fan, A., K. Maruta, H. Nakamura, S. Kumar, and W. Liu. 2010. Experimental investigation on flame pattern formations of DME-air mixtures in a radial microchannel. Combust. Flame 157 (9):1637–42. doi:10.1016/j.combustflame.2010.05.014.
  • Fan, A., S. Minaev, E. Sereshchenko, R. Fursenko, S. Kumar, W. Liu, and K. Maruta. 2009. Experimental and numerical investigations of flame pattern formations in a radial microchannel. Proc. Combust. Inst. 32 (2):3059–66. doi:10.1016/j.proci.2008.06.092.
  • Fan, A., S. Minaev, S. Kumar, W. Liu, and K. Maruta. 2008. Regime diagrams and characteristics of flame patterns in radial microchannels with temperature gradients. Combust. Flame 153 (3):479–89. doi:10.1016/j.combustflame.2007.10.015.
  • Ju, Y., and K. Maruta. 2011. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci. 37 (6):669–715. doi:10.1016/j.pecs.2011.03.001.
  • Kang, X., B. Sun, J. Wang, and Y. Wang. 2019. A numerical investigation on the thermo-chemical structures of methane-oxygen diffusion flame-streets in a microchannel. Combust. Flame 206:266–81. doi:10.1016/j.combustflame.2019.05.006.
  • Kang, X., R. J. Gollan, P. A. Jacobs, and A. Veeraragavan. 2016. Suppression of instabilities in a premixed methane-air flame in a narrow channel via hydrogen/carbon monoxide addition. Combust. Flame 173:266–75. doi:10.1016/j.combustflame.2016.07.003.
  • Kang, X., R. J. Gollan, P. A. Jacobs, and A. Veeraragavan. 2017. Numerical study of the effect of wall temperature profiles on the premixed methane-air flame dynamics in a narrow channel. RSC Adv. 7 (63):39940–54. doi:10.1039/C7RA07265A.
  • Kim, N. I., S. Kato, T. Kataoka, T. Yokomori, S. Maruyama, T. Fujimori, and K. Maruta. 2005. Flame stabilization and emission of small Swiss-roll combustors as heaters. Combust. Flame 141 (3):229–40. doi:10.1016/j.combustflame.2005.01.006.
  • Kumar, S., K. Maruta, and S. Minaev. 2007a. On the formation of multiple rotating Pelton-like flame structures in radial microchannels with lean methane-air mixtures. Proc. Combust. Inst. 31 (2):3261–68. doi:10.1016/j.proci.2006.07.174
  • Kumar, S., K. Maruta, and S. Minaev. 2007b. Experimental investigations on the combustion behavior of methane-air mixtures in a micro-scale radial combustor configuration. J. Micromech. Microeng. 17 (5):900. doi:10.1088/0960-1317/17/5/008
  • Kurdyumov, V. N., V. V. Gubernov, and R. V. Fursenko. 2017. Controlling of flame propagation in a composite solid energetic material: From stabilization to chaotic regimes. Combut. Flame 182:167–78. doi:10.1016/j.combustflame.2017.04.019.
  • Li, Q., J. Li, J. Shi, and Z. Guo. 2019. Effects of heat transfer on flame stability limits in a planar micro-combustor partially filled with porous medium. Proc. Combust. Inst. 37 (4):5645–54. doi:10.1016/j.proci.2018.06.023.
  • Li, Q., W. Zuo, Y. Zhang, J. Li, and Z. He. 2020. Effects of rectangular rib on exergy efficiency of a hydrogen-fueled micro combustor. Int. J. Hydrogen Energy 45 (16):10155–63. doi:10.1016/j.ijhydene.2020.01.221.
  • Lu, Q., J. Pan, W. Yang, Z. Pan, A. Tang, and Y. Zhang. 2016. Effects of products from heterogeneous reactions on homogeneous combustion for H2/O2 mixture in the micro combustor. Appl. Therm. Eng. 102:897–903. doi:10.1016/j.applthermaleng.2016.04.052.
  • Luo, Y., Y. Gan, and X. Jiang. 2017. Investigation of the effect of DC electric field on a small ethanol diffusion flame. Fuel 188:621–27. doi:10.1016/j.fuel.2016.10.073.
  • Mackay, K. K., J. B. Freund, and H. T. Johnson. 2018. Enhancement of hydrogen microcombustion via field-emission dielectric barrier discharge. Plasma Sources Sci. Technol. 27 (8):085007. doi:10.1088/1361-6595/aad43c.
  • Nakamura, H., A. Fan, S. Minaev, E. Sereshchenko, R. Fursenko, Y. Tsuboi, and K. Maruta. 2012. Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel. Combust. Flame 159 (4):1631–43. doi:10.1016/j.combustflame.2011.11.004.
  • Peng, Q., X. Zhao, X. Zhao, X. Zhao, and X. Zhao. 2018. Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor. Appl. Therm. Eng 130:541–51. doi:10.1016/j.applthermaleng.2017.11.016.
  • Richards, K. J., P. K. Senecal, and E. Pomraning CONVERGE (Version 2.3.0) Manual. Convergent Science, Inc., Madison, WI, 2016.
  • Ronney, P. D. 2003. Analysis of non-adiabatic heat-recirculating combustors. Combust. Flame 135 (4):421–39. doi:10.1016/j.combustflame.2003.07.003.
  • Singh, A. P., V. RatnaKishore, S. Minaev, and S. Kumar. 2015. Numerical investigations of unsteady flame propagation in stepped microtubes. RSC Adv. 5 (122):100879–90. doi:10.1039/C5RA21704K.
  • Sun, B., X. Kang, and Y. Wang. 2020. Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combustion performances. Energy 207:118194. doi:10.1016/j.energy.2020.118194.
  • Tang, A., T. Cai, J. Deng, D. Zhao, Q. Huang, and C. Zhou. 2019. Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors. Energy 179:558–70. doi:10.1016/j.energy.2019.05.005.
  • Tsuboi, Y., T. Yokomori, and K. Maruta. 2009. Lower limit of weak flame in a heated channel. Proc. Combust. Inst. 32 (2):3075–81. doi:10.1016/j.proci.2008.06.151.
  • Wan, J., and A. Fan. 2021. Recent progress in flame stabilization technologies for combustion-based micro energy and power systems. Fuel 286:119391. doi:10.1016/j.fuel.2020.119391.
  • Wan, J., and H. Zhao. 2018. Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels. Energy 157:448–59. doi:10.1016/j.energy.2018.05.189.
  • Xiang, Y., Z. Yuan, S. Wang, and A. Fan. 2019. Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor. Energy 179:315–22. doi:10.1016/j.energy.2019.05.052.
  • Yan, Y., H. Yan, L. Zhang, L. Li, J. Zhu, and Z. Zhang. 2018. Numerical investigation on combustion characteristics of methane/air in a micro-combustor with a regular triangular pyramid bluff body. Int. J. Hydrogen Energy 43 (15):7581–90. doi:10.1016/j.ijhydene.2018.02.168.
  • Yuan, Z., and A. Fan. 2020. The effects of aspect ratio on CH4/air flame stability in rectangular mesoscale combustors. J. Energy Inst. 93 (2):792–801. doi:10.1016/j.joei.2019.05.003.
  • Zou, P., Y. Deng, X. Kang, and J. Wang. 2020. A numerical study on premixed hydrogen/air flames in a narrow channel with thermally orthotropic walls. Int. J. Hydrogen Energy 45 (39):20436–48. doi:10.1016/j.ijhydene.2019.11.230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.