142
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Preparation and Evaluation of Iron-Based Catalysts from Corncob for NO Reduction

, , , &
Pages 3340-3356 | Received 25 Feb 2021, Accepted 29 Apr 2021, Published online: 10 May 2021

References

  • Arshad, A. S., M. W. T. Ryan, and Y. K. Shang. 2019. Pyrolysis of blend (oil palm biomass and sawdust) biomass using TG-MS. Bioresour. Technol. 274:439–46. doi:10.1016/j.biortech.2018.12.014.
  • Bao, L., and X. Li. 2012. Towards textile energy storage from cotton T-shirts. Adv. Mater. 24:3246–52. doi:10.1002/adma.201200246.
  • Cao, J., G. Xiao, X. Xu, D. K. Shen, and B. S. Jin. 2013. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process. Technol. 106:41–47. doi:10.1016/j.fuproc.2012.06.016.
  • Chen, L. S., R. Ni, T. J. Yuan, Q. Y. Yue, and B. Y. Gao. 2018. Removal of tridecane dicarboxylic acid in water by nanoscale Fe0/Cu0 bimetallic composites. Ecotoxicol. Environ. Saf. 164:219–25. doi:10.1016/j.ecoenv.2018.08.023.
  • Diana, L., R. Buitrago, A. Sepu´lveda-escribano, R. R. Francisco, and M. Fanor. 2007. Low-temperature catalytic adsorption of NO on activated carbon materials. Langmuir 23:12131–37. doi:10.1021/la701501q.
  • Gradoń, B., and J. Lasek. 2010. Investigations of the reduction of NO to N2 by reaction with Fe. Fuel 89:3505–09. doi:10.1016/j.fuel.2010.06.020.
  • Guo, Y., Y. Li, T. Zhu, and M. Ye. 2012. Effects of concentration and adsorption product on the adsorption of SO2 and NO on activated carbon. Energy Fuels 27:360–66. doi:10.1021/ef3016975.
  • Hao, B. Y., Y. G. Sun, Q. Shen, X. Zhang, and Z. S. Zhang. 2020. Insight into structure defects and catalytic mechanism for NO oxidation over Ce0.6Mn0.4Ox solid solutions catalysts: Effect of manganese precursors. Chemosphere 243:125406. doi:10.1016/j.chemosphere.2019.125406.
  • Hayashi, J., K. Atsuo, K. Muroyama, and A. P. Watkinson. 2000. Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–78. doi:10.1016/S0008-6223(00)00027-0.
  • Hayhurst, A. N., and A. D. Lawremce. 1997. The reduction of the nitrogen oxides NO and N2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed. Combust. Flame 110:351–65. doi:10.1016/S0010-2180(97)00085-0.
  • Hayhurst, A. N., and Y. Ninomiya. 1998. Kinetics of the conversion of NO to N2, during the oxidation of iron particles by NO in a hot fluidised bed. Chem. Eng. Sci. 53:1481–89. doi:10.1016/S0009-2509(98)00009-8.
  • He, Z. W., W. Zhang, and D. Zhang. 2012. Research advances in fabrication technologies and properties of the functional Fe3C. Mater. Rev. 26:21–26.
  • Hou, Y. Q., Y. L. Li, Q. Y. Li, Y. J. Liu, and Z. G. Hung. 2019. Insight into the role of TiO2 modified activated carbon fibers for the enhanced performance in low-temperature NH3-SCR. Fuel 245:554–62. doi:10.1016/j.fuel.2019.02.046.
  • Jean, M. N., V. Ricardo, P. Laurie, T. Jean-Philippe, K. Nicolas, E. Gaby, P. H. Cuong, and J. L. Marc. 2002. Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catal. Today 76:11–32. doi:10.1016/S0920-5861(02)00206-7.
  • Jeon, J. W., L. Zhang, J. L. Lutkenhaus, D. Lasjar, J. P. Lemmon, C. Daiwon, N. Manjula, J. Ali Hashmi, R. K. Xu, C. A. F. Motkuri, et al. 2015. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. ChemSusChem 8:428–32. doi:10.1002/cssc.201402621.
  • Jiang, J. C., and K. Sun. 2017. Review on preparation technology of activated carbon and its application. Chem. Ind. 37:1–13. doi:10.3969/j.0253-2417.2017.01.001.
  • Jin, R. B., Y. Liu, Z. B. Wu, H. Q. Wang, and T. T. Gu. 2010. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study. Chemosphere 78:1160–66. doi:10.1016/j.chemosphere.2009.11.049.
  • Jones, V. K., L. R. Neubauer, and C. H. Bartholomew. 1986. Effects of crystallite size and support on the carbon monoxide hydrogenation activity/selectivity properties of iron/carbon. J. Phys. Chem. 90:4832. doi:10.1021/j100411a023.
  • Li, X. C., H. R. Wang, G. G. Shao, G. Y. Wang, and L. M. Lu. 2019. Low temperature reduction of NO by activated carbons impregnated with Fe based catalysts. Int. J. Hydrogen Energy 46:25265–75. doi:10.1016/j.ijhydene.2019.04.008.
  • Li, Y. T., H. H. Yi, X. L. Tang, X. Liu, Y. Wang, B. C. Cui, and S. Z. Zhao. 2016. Study on the performance of simultaneous desulfurization and denitrification of Fe3O4-TiO2 composites. Chem. Eng. J. 304:89–97. doi:10.1016/j.cej.2016.035.
  • Li, Y. Y., and X. C. Li. 2019. Biomass activated carbon loaded with zero-valent iron nanocrystal clusters for direct catalytic reduction of NO. Ciesc J. 70 (3):1111–19. doi:10.11949/j.0438⁃1157.20180947.
  • Lin, J. F., V. V. Struzhkin, H. K. Mao, R. J. Hemley, and J. Li. 2004. Magnetic transition in compressed Fe3C from X-ray emission spectroscopy. J. Phys. Rev. B 70:212405. doi:10.1103/PhysRevB.70.212405.
  • Ma, G., Q. Yang, K. Sun, P. Hui, F. T. Ran, X. L. Zhao, and Z. Q. Lei. 2015. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour. Technol. 197:137–42. doi:10.1016/j.biortech.2015.07.100.
  • Ning, X., Y. H. Sun, H. Y. Fu, X. B. Qu, Z. Y. Xu, and S. R. Zheng. 2020. N-doped porous carbon supported Ni catalysts derived from modified Ni-MOF-74 for highly effective and selective catalytic hydrodechlorination of 1,2-dichloroethane to ethylene. Chemosphere 241:124978. doi:10.1016/j.chemosphere.2019.124978.
  • Onal, Y., C. Akmil-Basar, C. Sarici-Ozdemir, C. Sarici Ozdemir, and S. Erdogan. 2007. Textural development of sugar beet bagasse activated with ZnCl2. J. Hazard Mater 142:138–43. doi:10.1016/j.jhazmat.2006.07.070.
  • Qie, L., W. Chen, H. Xu, X. Xiong, Y. Jiang, Z. Feng, X. Hu, Y. Xin, Z. Zhang, and Y. Huang. 2013. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energ. Environ. Sci. 6:2497. doi:10.1039/c3ee41638k.
  • Qu, W. H., Y. Y. Xu, A. H. Lu, X. Q. Zhang, and W. C. Li. 2015. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour. Technol. 189:285–91. doi:10.1016/j.biortech.2015.04.005.
  • Seol, A. K., K. K. Seralathan, J. L. Kui, J. P. Yool, J. S. Patrick, H. L. Wang, M. K. Hyung, and T. O. Byung. 2013. Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem. Eng. J. 217:54–60. doi:10.1016/j.cej.2012.11.097.
  • Shen, B. X., X. Sun, J. H. Chen, S. Surjit, and H. Guoli. 2013. Study on low-temperature SCR catalysts based on biomass pyrolysis carbon. Environ. Sci. Technol. 36:4–7. doi:10.3969/j.1003-6504.2013.05.002.
  • Sheng, Z. H., L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, and X. H. Xia. 2011. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. Acs. Nano. 5:4350–58. doi:10.1021/nn103584t.
  • Su, Y. X., A. L. Su, and H. Cheng. 2013. Experimental study on direct catalytic reduction of NO by metallic iron. J. China Coal Soc. 1:206–10. doi:10.13225/j.cnki.jccs.2013.s1.045.
  • Wan, J., X. Du, R. M. Wang, E. Z. Liu, J. Jia, X. Bai, X. Y. Hu, and J. Fan. 2018. Mesoporous nanoplate multi-directional assembled Bi2WO6 for high efficient photocatalytic oxidation of NO. Chemosphere 193:737–44. doi:10.1016/j.chemosphere.2017.11.048.
  • Wang, B., Q. Ma, W. S. Wang, Z. Chun, D. F. Mei, H. B. Zhao, and C. G. Zheng. 2017. Effect of reaction temperature on the chemical looping combustion of coal with CuFe2O4 combined oxygen carrier. Energy Fuels 31:5233–45. doi:10.1021/acs.energyfuels.6b02525.
  • Wang, H. R., X. C. Li, F. R. Meng, G. Y. Wang, and D. K. Zhang. 2020. Preparation and evaluation of iron nanoparticles embedded CNTs grown on ZSM-5 as catalysts for NO decomposition. Chem. Eng. J. 392:123798. doi:10.1016/j.cej.2019.123798.
  • Wei, B., W. J. Yang, J. J. Wang, H. Z. Tan, S. K. Zhou, F. Wang, and J. F. Ma. 2019. Study on reduction mechanism of Fe2O3 by NH3 under SNCR condition. Fuel 225:115814. doi:10.1016/j.fuel.2019.115814.
  • Wu, Y., C. Xia, L. Cai, and S. Q. Shi. 2018. Controlling pore size of activated carbon through self-activation process for removing contaminants of different molecular sizes. Colloid Interface Sci. 5:41–47. doi:10.1016/j.jcis.2018.02.017.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. G. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yang, X. B., Y. L. Han, Y. G. Li, H. Zhang, F. P. Qian, and Y. M. Hu. 2019. Experimental study on desulfurization and denitration of sintering flue gas by activated carbon mixed with steel slag. Chin. J. Process Eng. 19 (2):440–46. doi:10.12034/j.1009-606X.218257.
  • Yin, A. D., W. Y. Deng, J. C. Ma, and Y. X. Su. 2018. Properties on NO removal over pyrolyzed sludge carbon. J. Chem. Ind. Eng. 69:2655–63. doi:10.11949/j.0438-1157.20171293.
  • Zeng, Y. Q., W. Song, Y. N. Wang, Y. H. Meng, F. J. Song, S. L. Zhang, and Q. Zhong. 2019. The utilization of dye wastewater in enhancing catalytic activity of CeO2-TiO2 mixed oxide catalyst for NO reduction and dichloromethane oxidation. Chemosphere 235:1146–53. doi:10.1016/j.chemosphere.2019.07.031.
  • Zhang, H., X. Liu, J. Li, and Z. C. Jiang. 2018. Performances of several solvents on the cleavage of inter- and intramolecular linkages of lignin in corncob residue. ChemSusChem 11:1494–504. doi:10.1002/cssc.201800309.
  • Zhang, X., S. Lin, Z. Chen, M. Megharaj, and R. Naidu. 2011. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: Reactivity, characterization and mechanism. Water Res. 45:3481–88. doi:10.1016/j.watres.2011.04.010.
  • Zhou, X., X. W. Zhai, G. X. Ge, J. M. Dan, K. Pan, J. Q. Tian, R. B. Sun, B. Dai, H. Pfeiffer, and F. Yu. 2020. Enhanced selective catalytic reduction of NO with CO over Cu/C nanoparticles synthetized from a Cu-benzene-1,3,5-tricarboxylate metalorganic framework by a continuous spray drying process. Chem. Eng. J. 388:124270. doi:10.1016/j.cej.2020.124270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.