124
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Small World Network Model Validation. Case Study of Suartone Historical Fire in Corsica

, , , , & ORCID Icon
Pages 3374-3389 | Received 15 Jan 2021, Accepted 02 May 2021, Published online: 11 May 2021

References

  • Adou, J. K., Y. Billaud, D. A. Brou, J. P. Clerc, J. L. Consalvi, A. Fuentes, A. Kaiss, F. Nmira, B. Porterie, L. Zekri, et al. 2010. Simulating wildfire patterns using a small-world network model. Ecol Modell 221 (11):1463–71. doi:10.1016/j.ecolmodel.2010.02.015.
  • Albinet, G., G. Searby, and D. Stauffer. 1986. Fire propagation in a 2-d random medium. Journal of Physics 47 (1):1–7. doi:10.1051/jphys:019860047010100.
  • Albini, F. A. (1976) Estimating wildfire behavior and effects. USDA forest service, Intermountain Forest and Range Experiment Station, General Technical Report INT-GTR-30. (Ogden, UT).
  • Albini, F. A. 1981. A model for the wind-blown flame from a line fire. Combustion and Flame 43:155–74. doi:10.1016/0010-2180(81)90014-6.
  • Anderson, H. E. (1982) Aids to determining fuels models for estimating fire behaviour. Technical Report INT-122, USDA Forest service, Ogden, UTAH, USA.
  • Anderson, H. E., and R. C. Rothermel (1966) Influence of moisture and wind upon the characteristics of free burning. Proceedings of the 10th Symposium (international) on Combustion, the Combustion Institute, 1009–19.
  • Andrews, P. L. 2014. Current status and future needs of the BehavePlus Fire Modeling System. International Journal of Wildland Fire 23 (1):21–33. doi:10.1071/WF12167.
  • Bard, S., and P. J. Pagni (1985). Spatial variation of soot volume fractions in pool fire diffusion flames. In Fire Safety Science – Proc. of the 1st Int. Symp, 361–69.
  • Batchelor, G. 1967. An Introduction to Fluid Mechanics. London: Cambridge University Press.
  • Brzustowski, T. A., and S. Jr OC (1971) Predicting radiant heating from flames. Mid-year Meeting of the API. Philadelphia.
  • Burgan, R., and R. C. Rothermel (1984) BEHAVE: Fire behaviour prediction and fuel modelling system-FUEL subsystem. Tech. Rep. INT-167, USDA Forest Service.
  • Butler, B. W. (1993) In Proceedings: 12th Conference of Fire and Forest Meteorology, 26.
  • Caldarelli, G., R. Frondoni, A. Gabrielli, M. Montuori, R. Retzlaff, and C. Ricotta. 2001. Percolation in real wildfires. Europhysics Letters (EPL) 56 (4):510–16. doi:10.1209/epl/i2001-00549-4.
  • Cheney, N. P., J. S. Gould, and W. R. Catchpole. 1993. The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands. International Journal of Wildland Fire 3 (1):31–44. doi:10.1071/WF9930031.
  • Cheney, N. P., J. S. Gould, and W. R. Catchpole. 1998. Prediction of fire spread in grasslands. International Journal of Wildland Fire 8 (1):1–13. doi:10.1071/WF9980001.
  • Coleman, J. R., and A. L. Sullivan. 1996. A real-time computer application for the prediction of fire spread across the Australian landscape. Simulation 67 (4):230–40. doi:10.1177/003754979606700402.
  • Croba, D., D. Lalas, C. Papadopoulos, and D. Tryfonopoulos (1994) Numerical simulation of forest fire propagation in complex terrain. In Proceedings of the 2nd International Conference on Forest Fire Research, Vol. 1, November, Coimbra, Portugal. (Ed. DX Viegas), 491–500.(DX Viegas: Coimbra, Portugal).
  • De Mestre, N. J., E. A. Catchpole, D. H. Anderson, and R. C. Rothermel. 1989. Uniform propagation of a planar fire front without wind. Combustion Science and Technology 65 (4–6):231–44. doi:10.1080/00102208908924051.
  • Dupuy, J., and M. Larini. 1999. Fire spread through a porous forest fuel bed: A radiative and convective model including fire-induced flow effects. International Journal of Wildland Fire 9 (3):155–72. doi:10.1071/WF00006.
  • Finney, M. A. (1998) “FARSITE: Fire area simulator-model development and evaluation,” Research Paper RMRS-RP-4, USDAForest Service, Rocky Mountain Research Station, Fort Collins, Colo, USA.
  • Flowstar, CERC 2019, www.cerc.co.uk/environmental-software/FLOWSTAR-Energy-model.html
  • Hamamousse, N., A. Kaiss, and N. Zekri. (2019). Sensitivity analysis of the small world model, In Case study: Experimental Australia fires, Cheney 1986 Private communication LEPM.
  • Hamby, D. M. 1994. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32 (2):135–54. doi:10.1007/BF00547132.
  • Hargrove, W. W., R. H. Gardner, M. G. Turner, W. H. Romme, and D. G. Despain. 2000. Simulating fire patterns in heterogeneous landscapes. Ecol Modell 135 (2–3):243–63. doi:10.1016/S0304-3800(00)00368-9.
  • Heskestad, G. 1983. Luminous Heights of turbulent diffusion flames. Fire Safety Journal 5 (2):103–08. doi:10.1016/0379-7112(83)90002-4.
  • Hottel, H. C., G. C. Williams, and F. R. Steward. 1965. The modeling of firespread through a fuel bed. Proc Combust Inst 10 (1):997–1007. doi:10.1016/S0082-0784(65)80242-9.
  • Koo, E., P. J. Pagni, J. Woycheese, S. Stephens, D. R. Weise, and J. Huff (2005) A simple physical model for fire spread rate. In Fire Safety Science – Proc. of the 8th Int, 851–62.
  • Linn, R. R. (1997) A transport model for prediction of wildfire behaviour. Los Alamos National Laboratory, Science Report LA–13334–T.
  • Manzello, S. L. 2020. Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Switzerland: Springer nature.
  • McCaffrey, B. (1995). Flame Height. In The SFPE Handbook of Fire Protection Engineering, ed. P. J. DiNenno, et al. 2 ed. Quincy, MA: National Fire Protection Association.
  • Mell, W., M. A. Jenkins, J. Gould, and P. Cheney. 2007. A physics-based approach to modelling grassland fires. International Journal of Wildland Fire 16 (1):1–22. doi:10.1071/WF06002.
  • Merrill, D. F., and M. E. Alexander, Glossary of forest fire management terms, National Research Council of Canada, Committee for Forest Fire Management, Ottawa, Canada, 1987.
  • Morvan, D., J. L. Dupuy, E. Rigolot, and J. C. Valette. 2006. FIRESTAR: A physically based model to study wildfire behaviour. For. Ecol. Manage. 234:S114. doi:10.1016/J.FORECO.2006.08.155.
  • Nmira, F., J. L. Consalvi, P. Boulet, and B. Porterie. 2010. Numerical study of wind effects on the characteristics of flames from non-propagating vegetation fires. Fire Safety Journal 45 (2):129–41. doi:10.1016/j.firesaf.2009.12.004.
  • Pagni, P. J., and T. P. Peterson (1973) Flame spread through porous fuels. In 14th Symposium (International) on Combustion, The Combustion Institute, 1099–107.
  • Porterie, B., N. Zekri, J. P. Clerc, and J. P. Loraud. 2007. Modeling forest fire spread and spotting process with small world networks. Combustion and Flame 149 (1–2):63–78. doi:10.1016/j.combustflame.2006.12.008.
  • Putnam, A. A. (1965) A model for the windblownflame from a line fire.Proccedings of tenth International Symposium on Combustion: 1039–46. The Combustion Institute, Pitts., PA.
  • Rehm, R., and R. MCDermott (2009) Fire-front propagation using the level set method. NIST Technical Note 1611. (Gaithersburg, MD). Available at http://fire.nist.gov/bfrlpubs/fire09/art023.html [Verified 6 July 2015]
  • Rochoux, M. C., B. Delmotte, B. Cuenot, S. Ricci, and A. Trouvé. 2013. Regional-scale simulations of wildland fire spread informed by real-time flame front observations. Proceedings of the Combustion Institute 34 (2):2641–47. doi:10.1016/j.proci.2012.06.090.
  • Sabi, F. Z., S. M. Terrah, O. Mosbah, A. Dilem, N. Hamamousse, A. Sahila, O. Harrouz, H. Boutchiche, F. Z. Chaib, N. Zekri, et al. 2021. Ignition/non-ignition phase transition: A new critical heat flux estimation method. Fire Safety Journal 119:103257. doi:10.1016/j.firesaf.2020.103257.
  • Santoni, P. A., J. P. Filippi, J. H. Balbu, and F. Bosseur. (2011). dynamic wildland fire behaviour case studies and fuel models forlandscape-scale fire modeling. Journal of Combustion 11: Article ID 613424: 1. doi:10.1155/2011/613424.
  • Stauffer, D., and A. Aharony. 1991. Introduction to Percolation Theory. Taylor & Francis, London
  • Steering Committee, C. W. F. G. M. (2004), Prometheus user manual v.3.0.1, Canadian forest service.
  • Suarton fire description, internal report SDIS 20, 2003.
  • Sullivan, A. L. 2009. Wildland surface fire spread modelling, 1990 - 2007. 3: Simulation and mathematical analogue models. International Journal of Wildland Fire 18 (4):387–403. doi:10.1071/WF06144.
  • Téphany, H., J. Nahmias, J. Duarte. 1997. Combustion in heterogeneous media. A critical phenomena, Phys. A 242, 57–69
  • Thomas, P. H. (1963) The size of flames from natural fires. 9thSymposium (int.) on Combustion, The Combustion Institute, 844–59.
  • Thomas, P. H., and R. W. Pickard. 1961. Fire spread in forests and heathland materials. London: Report Forest Research, Her Majesty’s Stationary Office.
  • Watts, D. J., and S. H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393 (6684):440–42. doi:10.1038/30918.
  • Weber, R. O. 1991. Toward a comprehensive wildlife spread model. International Journal of Wildland Fire 1 (4):245–48. doi:10.1071/WF9910245.
  • Zekri, N., B. Porterie, J. P. Clerc, and J. C. Loraud. 2005. Propagation in a two-dimensional weighted local small-world network. Physical Review E 71 (4):046121. doi:10.1103/PhysRevE.71.046121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.