163
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Assessing ignitions of explosive gas mixtures by low-energetic electrical discharges using OH-LIF and 1D-simulations

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-23 | Received 27 Dec 2020, Accepted 12 May 2021, Published online: 09 Jun 2021

References

  • Bane, S. P. M. (2010) Spark ignition: Experimental and numerical investigation with application to aviation safety, Ph.D. thesis, California Institute of Technology.
  • Bane, S. P. M., J. L. Ziegler, P. A. Boettcher, S. A. Coronel, and J. E. Shepherd. 2011. Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen. J. Loss. Prev. Proc. Ind 26 (2):290–94. doi:10.1016/j.jlp.2011.03.007.
  • Bane, S. P. M., J. L. Ziegler, and J. E. Shepherd. 2015. Investigation of the effect of electrode geometry on spark ignition. Combust. Flame 162 (2):462–69. doi:10.1016/j.combustflame.2014.07.017.
  • Berglind, T., and J. Sunner. 1986. The temporal development of OH-concentration profiles in ignition kernels studied by single-pulse laser induced fluorescence. Combust. Flame 63 (1–2):279–88. doi:10.1016/0010-2180(86)90127-6.
  • Bradley, D., and F. K. K. Lung. 1987. Spark ignition and the early stages of turbulent flame propagation. Combust. Flame 69 (1):71–93. doi:10.1016/0010-2180(87)90022-8.
  • Brandes, E., and W. Möller. 2008. Flammable liquids and gases, Safety characteristic data. 2nd, Vol. 1. Wirtschaftsverl. NW.
  • Cathey, C., J. Cain, H. Wang, M. A. Gundersen, C. Carter, and M. Ryan. 2008. OH production by transient plasma and mechanism of flame ignition and propagation in quiescent methane–air mixtures. Combust. Flame 154 (4):715–27. doi:10.1016/j.combustflame.2008.03.025.
  • Chevalier, C. (1993) Entwicklung eines detaillierten Reaktionsmechanismus zur Modellierung der Verbrennungsprozesse von Kohlenwasserstoffen bei Hoch- und Niedertemperaturbedingungen, Dissertation, University of Stuttgart.
  • Coronel, S. A., R. Mével, S. P. M. Bane, and J. E. Shepherd. 2013. Experimental study of minimum ignition energy of lean H2–N2O mixtures. Proc. Combust. Inst 34 (1):895–902. doi:10.1016/j.proci.2012.05.062.
  • Dreizler, A., S. Lindenmaier, U. Maas, J. Hult, M. Aldén, and C. F. Kaminski. 2000. Characterisation of a spark ignition system by planar laser-induced fluorescence of OH at high repetition rates and comparison with chemical kinetic calculations. Applied Physics B: Lasers and Optics 70 (2):287–94. doi:10.1007/s003400050047.
  • Dumitrache, C., and A. Yalin. 2020. Gas dynamics and vorticity generation in laser-induced breakdown of air. Optics Express 28 (4):5835–50. doi:10.1364/OE.385430.
  • Eckhoff, R. K. 2002. Minimum ignition energy (MIE) — A basic ignition sensitivity parameter in design of intrinsically safe electrical apparatus for explosive dust clouds. Journal of Loss Prevention in the Process Industries 15 (4):305–10. doi:10.1016/S0950-4230(02)00003-7.
  • Eckhoff, R. K., M. Ngo, and W. Olsen. 2010. On the minimum ignition energy (MIE) for propane/air. Journal of Hazardous Materials 175 (1–3):293–97. doi:10.1016/j.jhazmat.2009.09.162.
  • Eichenberger, D. A. 1999. Effect of unsteady stretch on spark-ignited flame kernel survival. Combustion and Flame 118 (3):469–78. doi:10.1016/S0010-2180(98)00169-2.
  • Essmann, S., D. Markus, H. Grosshans, and U. Maas. 2020. Experimental investigation of the stochastic early flame propagation after ignition by a low-energy electrical discharge. Combustion and Flame 211:44–53. doi:10.1016/j.combustflame.2019.09.021.
  • Essmann, S., D. Markus, and U. Maas. 2013. Investigation of ignition by low energy capacitance sparks. Proceedings of the European Combustion Meeting 2013 3–45.
  • Essmann, S., D. Markus, and U. Maas. 2016. Investigation of the spark channel of electrical discharges near the minimum ignition energy. PLASMA PHYSICS AND TECHNOLOGY 3 (3):116–21. doi:10.14311/ppt.2016.3.116.
  • Essmann, S., S. Spörhase, H. Grosshans, and D. Markus. 2018. Precise triggering of electrical discharges by ultraviolet laser radiation for the investigation of ignition processes. Journal of Electrostatics 91:34–40. doi:10.1016/j.elstat.2017.12.003.
  • Han, J., H. Yamashita, and N. Hayashi. 2010. Numerical study on the spark ignition characteristics of a methane–air mixture using detailed chemical kinetics: Effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay. Combustion and Flame 157 (7):1414–21. doi:10.1016/j.combustflame.2010.02.021.
  • Hartlieb, A. T., D. Markus, W. Kreutner, and K. Kohse-Höinghaus. 1997. Measurement of vibrational energy transfer of OH (A 2 Σ +, v ′ =1→0) in low-pressure flames. . Applied Physics B: Lasers and Optics 162 (1):81–91. doi:10.1007/s003400050254.
  • Hattwig, M., and H. Steen. 2004. Handbook of explosion prevention and protection. Wiley-VCH.
  • International, A. S. T. M. (2013) ASTM E582-07(2013)e1: Standard test method for minimum ignition energy and quenching distance in gaseous mixtures.
  • Ishii, K., T. Tsukamoto, Y. Ujiie, and M. Kono. 1992. Analysis of ignition mechanism of combustible mixtures by composite sparks. Combustion and Flame 91 (2):153–64. doi:10.1016/0010-2180(92)90097-9.
  • Kaminski, C. F., J. Hult, M. Aldén, S. Lindenmaier, A. Dreizler, U. Maas, and M. Baum. 2000. Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations. Proceedings of the Combustion Institute 28 (1):399–405. doi:10.1016/S0082-0784(00)80236-2.
  • Kono, M., K. Niu, T. Tsukamoto, and Y. Ujiie. 1989. Mechanism of flame kernel formation produced by short duration sparks. Symposium (International) on Combustion 22 (1):1643–49. doi:10.1016/S0082-0784(89)80176-6.
  • Korytchenko, K., I. Tomashevskiy, I. Varshamova, S. Essmann, D. Dubinin, and K. Ostapov (2020) Challenges of energy measurements of low-energy spark discharges. IEEE KhPI Week on Advanced Technology, Kharkiv, Ukraine, 421––424.
  • Korytchenko, K. V., S. Essmann, D. Markus, U. Maas, and E. V. Poklonskii. 2018. Numerical and experimental investigation of the channel expansion of a low-energy spark in the air. Combust. Sci. And Tech 191: 2136–2161.
  • Langer, T., G. Gramse, D. Möckel, U. Von Pidoll, and M. Beyer. 2012. MIE experiments and simultaneous measurement of the transferred charge – A verification of the ignition threshold limits. Journal of Electrostatics 70 (1):97–104. doi:10.1016/j.elstat.2011.11.001.
  • Lewis, B., and G. Von Elbe. 1987. Combustion, flames and explosions of gases. 3rd ed ed. Academic Press: Orlando.
  • Luo, Z., C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and T. Lu. 2012. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combustion and Flame 34 (1):895–902. doi:10.1016/j.combustflame.2011.05.023.
  • Maas, U., and J. Warnatz. 1988. Ignition processes in hydrogen oxygen mixtures. . Combustion and Flame 74 (1):53–69. doi:10.1016/0010-2180(88)90086-7.
  • Maly, R. R. 1994. State of the art and future needs in S.I. engine combustion. Symposium (International) on Combustion 25 (1):111–24. doi:10.1016/S0082-0784(06)80635-1.
  • Markus, D., S. Essmann, J.-R. Kummer, R. Shekhar, C. Uber, U. Gerlach, and U. Maas. 2017. Ignition by electrical discharges. Zeitschrift Für Physikalische Chemie 231 (10):1655–82. doi:10.1515/zpch-2016-0903.
  • Markus, D., A. Hallermann, M. Paul, T. Langer, and F. Lienesch. 2013. Characterization of the ignition by repetitive streamer discharges using laser diagnostics. Journal of Loss Prevention in the Process Industries 26 (2):324–28. doi:10.1016/j.jlp.2011.10.002.
  • Matalon, M. 1983. On flame stretch. Combustion Science and Technology 31 (3–4):169–81. doi:10.1080/00102208308923638.
  • Moorhouse, J., A. Williams, and T. E. Maddison. 1974. An investigation of the minimum ignition energies of some C1 to C7 hydrocarbons. Combustion and Flame 23 (2):203–13. doi:10.1016/0010-2180(74)90058-3.
  • Nakaya, S., K. Hatori, M. Tsue, M. Kono, D. Segawa, and T. Kadota. 2011. Numerical analysis on flame kernel in spark ignition methane/air mixtures. Journal of Propulsion and Power 27 (2):363–70. doi:10.2514/1.47136.
  • Ono, R., and T. Oda. 2008. Measurement of OH density and gas temperature in incipient spark-ignited hydrogen–air flame. Combust. Flame 152:69–79.
  • Physikalisch-Technische Bundesanstalt (2020) Daily atmospheric pressure, accessed: 2020 December 23. Retrieved from https://www.ptb.de/cms/nc/ptb/fachabteilungen/abt3/fb-33/ag-333/luftdruckdaten.html
  • Rajendran, L. K., B. Singh, P. P. Vlachos, and P. Sally. 2020. Filamentary surface plasma discharge flow length and time scales. arXiv 2010:08446.
  • Roberts, W. L., J. F. Driscoll, M. C. Drake, and J. W. Ratcliffe. 1992. OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex. Symp. (Int.) On Combustion 24:169–76.
  • Shekhar, R., L. R. Boeck, C. Uber, and U. Gerlach. 2017. Ignition of a hydrogen-air mixture by low voltage electrical contact arcs. Combust. Flame 186:236–46.
  • Shekhar, R., S. Gortschakow, H. Grosshans, U. Gerlach, and D. Uhrlandt. 2019. Numerical investigation of transient, low-power metal vapour discharges occurring in near limit ignitions of flammable gas. J. Phys. D: Appl. Phys 52:045202.
  • Singh, B., L. K. Rajendran, S. P. Bane, and P. Vlachos (2018) Characterization of fluid motion induced by nanosecond spark plasmas: Using particle image velocimetry and Background Oriented Schlieren. 2018 AIAA Aerospace Sciences Meeting.
  • Singh, B., L. K. Rajendran, P. P. Vlachos, and S. P. M. Bane. 2021. Shock generated vorticity in spark discharges. arXiv 2101:07358v1.
  • Spiglanin, T., A. Mcilroy, E. Fournier, R. Cohen, and J. Syage. 1995. Time-resolved imaging of flame kernels: Laser spark ignition of H2/O2/Ar mixtures. Combust. Flame 102:310–28.
  • Starikovskiy, A., and N. Aleksandrov. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci 39:61–110.
  • Thiele, M., J. Warnatz, A. Dreizler, S. Lindenmaier, R. Schießl, U. Maas, A. Grant, and P. Ewart. 2002. Spark ignited hydrogen/air mixtures. Combust. Flame 128:74–87.
  • Wähner, A., G. Gramse, T. Langer, and M. Beyer. 2013. Determination of the minimum ignition energy on the basis of a statistical approach. J. Loss. Prev. Proc. Ind 26:1655–60.
  • Wang, J. M., D. A. Buchta, and J. Freund. 2020. Hydrodynamic ejection caused bylaser-induced optical breakdown. J. Fluid Mech 888.
  • Yuasa, T., S. Kadota, M. Tsue, M. Kono, H. Nomura, and Y. Ujiee. 2002. Effects of energy deposition schedule on minimum ignition energy in spark ignition of methane/air mixtures. Proc. Combust. Inst 29:743–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.