150
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Changes in Microcrystalline Composition, Functional Groups and Combustion Characteristics of Coal in Coalfield Fire Area after Baking by Different Temperature Gradients

, , , , , , , & show all
Pages 85-106 | Received 04 Feb 2021, Accepted 24 May 2021, Published online: 10 Jun 2021

References

  • Baysala, M., A. Yürümb, B. Yildiza, and Y. Yürüma. 2016. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. International Journal of Coal Geology 163:166–76. doi:10.1016/j.coal.2016.07.009.
  • Chen, L. Z., X. Y. Qi, J. Yang, and H. H. Xin. 2021. Thermogravimetric and infrared spectral analysis of candle coal pyrolysis under low-oxygen concentration. Thermochim Acta 696:178840. doi:10.1016/j.tca.2020.178840.
  • Chen, X. D., and J. B. Stott. 1997. Oxidation rates of coals as measured from one-dimensional spontaneous heating. Combustion and Flame 109 (4):578–86. doi:10.1016/S0140-6701(97)84514-6.
  • Chen, X. K., T. Ma, X. W. Zhai, and C. K. Lei. 2019. Thermogravimetric and infrared spectroscopic study of bituminous coal spontaneous combustion to analyze combustion reaction kinetics. Thermochim Acta 676:84–93. doi:10.1016/j.tca.2019.04.002.
  • Chi, K. Y., J. Wang, L. Y. Ma, J. F. Wang, and C. S. Zhou. 2020. Synergistic inhibitory effect of free radical scavenger/inorganic salt compound inhibitor on spontaneous combustion of coal. Combust. Sci. Technol 1–18. doi:10.1080/00102202.2020.1858290.
  • Deng, J., J. Y. Zhao, Y. N. Zhang, and C. P. Wang. 2016. Experiments on the microscopic characteristics of the secondary oxidation and spontaneous combustion of different metamorphic coals. Journal of China Coal Society 41:1164–72. in Chinese.
  • Furmann, A., M. Mastalerz, S. C. Brassell, A. Schimmelmann, and F. Picardal. 2013. Extractability of biomarkers from high- and low-vitrinite coals and its effect on the porosity of coal. International Journal of Coal Geology 107:141–51. doi:10.1016/j.coal.2012.09.010.
  • Hao, C. Y., Y. L. Chen, Y. Y. Li, and J. R. Wang. 2019. Study on oxygen consumption rule and inhibitory effect of new organic deoxidizing inhibitors for coal spontaneous combustion prevention. Combust. Sci. Technol 1–15. doi:10.1080/00102202.2019.1616181.
  • He, Q. L., W. Lu, J. L. Li, and J. Xu. 2020. Study on Thermokinetic parameters of Coal-oxygen reaction path with constant temperature difference guiding method. Combust. Sci. Technol 1–24. doi:10.1080/00102202.2020.1858291.
  • Huang, Z. A., . J. Y. Li, Y. K. Gao, Z. L. Shao, Y. H. Zhang, and Y. C. Wang. 2020. Thermal behavior and characteristics of functional groups on lignite secondary oxidation. Combust. Sci. Technol 1–19. doi:10.1080/00102202.2020.1787395.
  • Ibarra, J. V., E. Muñoz, and R. Moliner. 1996. FTIR study of the evolution of coal structure during the coalification process. Org. Geochem. 24 (6–7):725–35. doi:10.1016/0146-6380(96)00063-0.
  • Kong, B., Z. H. Li, E. Y. Wang, W. Lu, L. Chen, and G. S. Qi. 2018a. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. Process Safety and Environmental Protection 119:285–94. doi:10.1016/j.psep.2018.08.002.
  • Kong, B., E. Y. Wang, and Z. H. Li. 2018b. The effect of high temperature environment on rock properties—an example of electromagnetic radiation characterization. Environmental Science & Pollution Research 29 (25):29104–14. doi:10.1007/s11356-018-2940-z.
  • Li, J. Z., J. P. Wang, and Z. Sun. 2020. Research progress of spectroscopy of coal and its microstructure during pyrolysis. Fuel and Chemical Industry 51:8–13. in Chinese.
  • Li, Q. W., Y. Xiao, C. P. Wang, J. Deng, and C. M. Shu. 2019. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel 250:235–44. doi:10.1016/j.fuel.2019.04.003.
  • Liu, S. Q., W. P. Ma, D. French, K. Y. Tuo, and X. Mei. 2019. Sequential mineral transformation during underground coal gasification with the presence of coal partings. International Journal of Coal Geology 208:1–11. doi:10.1016/j.coal.2019.04.003.
  • Lu, L., V. Sahajwalla, C. Kong, and D. Harris. 2001. Quantitative X-ray diffraction analysis and its application to various coals. Carbon 39 (12):1821–33. doi:10.1016/S0008-6223(00)00318-3.
  • Lu, W., B. L. Guo, G. S. Qi, W. M. Cheng, and W. Y. Yang. 2020. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution. Fuel 265:1–11. doi:10.1016/j.fuel.2020.117032.
  • Nugroho, Y. S., A. C. McIntosh, and B. M. Gibbs. 2000. Low-temperature oxidation of single and blended coals. Fuel 79 (15):1951–61. doi:10.1016/S0016-2361(00)00053-3.
  • Pan, R. K., C. Li, M. G. Yu, Z. J. Xiao, and D. Fu. 2020. Evolution patterns of coal micro-structure in environments with different temperatures and oxygen conditions. Fuel 261:1–8. doi:10.1016/j.fuel.2019.116425.
  • Song, H. J., G. R. Liu, J. Z. Zhang, and J. H. Wu. 2017. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method. Fuel Processing Technology 156:454–60. doi:10.1016/j.fuproc.2016.10.008.
  • Song, J. J., J. Deng, J. Y. Zhao, Y. N. Zhang, and C. M. Shu. 2021. Comparative analysis of exothermic behaviour of fresh and weathered coal during low-temperature oxidation. Fuel 289:119942. doi:10.1016/j.fuel.2020.119942.
  • Song, Y. W., S. Q. Yang, W. X. Song, Z. C. Zhang, K. Yang, X. Y. Jiang, Q. C. Zhou, and D. P. Zhang. 2020. Adsorption characteristics of soaked air-dried coal and reaction characteristics of free radical functional groups in CH4-containing oxidizing atmosphere. Combustion Science and Technology 1–22. doi:10.1080/00102202.2020.1806253.
  • Sonibare, O. O., T. Haeger, and S. F. Foley. 2010. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 35 (12):5347–5343. doi:10.1016/j.energy.2010.07.025.
  • Wang, C. P., X. D. Duan, Y. Xiao, Q. W. Li, and J. Deng. 2020a. Thermokinetic characteristics of coal combustion under high temperatures and Oxygen–Limited atmospheres. Combust. Sci. Technol 11:1–18. doi:10.1080/00102202.2020.1810680.
  • Wang, G., X. J. Qin, C. H. Jiang, and Z. Y. Zhang. 2020b. Simulation of seepage and deformation of three-dimensional CT reconstruction of coal microstructure under temperature. Rock and Soil Mechanics 41:1750–60. in Chinese.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science 29 (6):487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, J., Y. Q. He, H. Li, J. D. Yu, W. N. Xie, and H. Wei. 2017. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13 C NMR, HRTEM and XPS techniques. Fuel 203:764–73. doi:10.1016/j.fuel.2017.05.042.
  • Wang, K., P. Gao, W. L. Sun, H. H. Fan, Y. Z. He, and T. Han. 2020c. Thermal behavior of the Low-temperature secondary oxidation of coal under different PRe-oxidation temperatures. Combust. Sci. Technol 5:1–19. doi:10.1080/00102202.2020.1828378.
  • Wang, M., Z. S. Li, W. B. Huang, J. X. Yang, and H. T. Xue. 2015. Coal pyrolysis characteristics by TG–MS and its late gas generation potential. Fuel 156:243–53. doi:10.1016/j.fuel.2015.04.055.
  • Xu, Q., S. Q. Yang, W. M. Yang, Z. Q. Tang, X. C. Hu, W. X. Song, and B. Z. Zhou. 2020. Micro-structure of crushed coal with different metamorphic degrees and its low-temperature oxidation. Process Safety and Environmental Protection 140:330–38. doi:10.1016/j.psep.2020.05.007.
  • Xu, T. 2017. Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes. Advanced Powder Technology 28 (8):1841–48. doi:10.1016/j.apt.2017.01.015.
  • Yan, J. C., Z. P. Lei, Z. K. Li, Z. C. Wang, S. B. Ren, S. G. Kang, X. L. Wang, and H. F. Shui. 2020. Molecular structure characterization of low-medium rank coals via XRD, solid state 13 C NMR and FTIR spectroscopy. Fuel 268:1–9. doi:10.1016/j.fuel.2020.117038.
  • Yoshizawa, N., K. Maruyama, Y. Y. Takahashi, G. Katagiri, Y. Shimane, and H. Michiakiet. 2001. Standardization of carbon structural analysis in coal by X-ray diffraction (1) - Influence of deashing and solvent treatment upon stacking structure of aromatic layers in coal. Nippon Enerugi Gakkaishi/Journal Japan Inst Energy 80:349–55.
  • Zhai, X. W., H. Ge, C. M. Shu, D. Obracaj, K. Wang, and B. Laiwang. 2020a. Effect of the heating rate on the spontaneous combustion characteristics and exothermic phenomena of weakly caking coal at the low-temperature oxidation stage. Fuel 268:1–8. doi:10.1016/j.fuel.2020.117327.
  • Zhai, X. W., H. Ge, T. Y. Wang, C. M. Shu, and J. Li. 2020b. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal. Energy 205:1–12. doi:10.1016/j.energy.2020.118076.
  • Zhang, R., J. Liu, Z. Y. Sa, Z. Q. Wang, S. Q. Lu, and Z. Y. Lv. 2020. Fractal characteristics of acoustic emission of gas-bearing coal subjected to true triaxial loading. Measurement 169:108349. doi:10.1016/j.measurement.2020.108349.
  • Zhao, J. Y., X. X. Zhang, J. J. Song, Y. N. Zhang, and K. Wang. 2019. Test of coal spontaneous combustion index gas at different temperature stages under high temperature and low oxygen. Journal of Xi’an University of Science and Technology 39:189–93. in Chinese.
  • Zheng, Y. N., Q. Z. Li, B. Q. Lin, Y. Zhou, Q. Liu, G. Y. Zhang, and Y. Zhao. 2020. Real-time analysis of the changing trends of functional groups and corresponding gas generated law during coal spontaneous combustion. Fuel Processing Technology 199:1–10. doi:10.1016/j.fuproc.2019.106237.
  • Zhou, C. S., Y. F. Zhang, J. L. Wang, S. Xue, J. M. Wu, and L. P. Chang. 2017. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal. International Journal of Coal Geology 171:212–22. doi:10.1016/j.coal.2017.01.013.
  • Zhou, X. D., Y. L. Yang, K. Y. Zheng, G. D. Miao, M. H. Wang, and P. R. Li. 2020. Study on the spontaneous combustion characteristics and prevention technology of coal seam in overlying close goaf. Combust. Sci. Technol 1–23. doi:10.1080/00102202.2020.1863953.
  • Zhu, H. Q., Y. J. Hui, W. Wang, X. He, S. H. Fang, and Y. L. Zhang. 2012. Quantum chemical calculation of reaction characteristics of hydroxyl at different positions during coal spontaneous combustion. Process Safety and Environmental Protection 148:624–35. doi:10.1016/j.psep.2020.11.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.