202
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental and Analytical Investigation of a Counter-flow Reactor at Lean Conditions

ORCID Icon, ORCID Icon & ORCID Icon
Pages 107-132 | Received 18 Jul 2020, Accepted 31 May 2021, Published online: 17 Jun 2021

References

  • Belmont, E. L., I. Schoegl, and J. L. Ellzey. 2013. Experimental and analytical investigation of lean premixed methane/air combustion in a mesoscale counter-flow reactor. Proc. Combust. Inst. 34 (2):3361–67. doi:10.1016/j.proci.2012.06.087.
  • Belmont, E. L., and J. L. Ellzey. 2014. Lean heptane and propane combustion in a non-catalytic parallel-plate counter-flow reactor. Combust. Flame. 161 (4):1055–62. doi:10.1016/j.combustflame.2013.10.026.
  • Belmont, E. L., P. P. Radyjowski, and J. L. Ellzey. 2015. Effect of geometric scale on heat recirculation and syngas production in a noncatalytic counter-flow reformer. Combust. Sci. Technol. 187 (6):874–93. doi:10.1080/00102202.2014.978864.
  • Berg, R. E. and D. G. Stork, 1982. The physics of sound. 1st ed. Upper Saddle River, N.J: Pearson Prentice-Hall, pp. 75–83
  • Bourell, D. L., H. L. Marcus, J. W. Barlow, and J. J. Beaman. 1992. Selective laser sintering of metals and ceramics. Int. J. Powder Metall. 28:369–81.
  • Chatham, C. A., T. E. Long, and C. B. Williams. 2019. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog. Polym. Sci. 93:68–95. doi:10.1016/j.progpolymsci.2019.03.003.
  • Chen, C. H., and P. D. Ronney. 2011. Three-dimensional effects in counterflow heatrecirculating combustors. Proc. Combust. Inst. 33 (33):3285–91. doi:10.1016/j.proci.2010.06.081.
  • Chen, C.-H., and P. D. Ronney. 2013. Scale and geometry effects on heat-recirculating combustors. Combust. Theory Model. 17 (5):888–905. doi:10.1080/13647830.2013.812807.
  • Chou, S. K., W. M. Yang, K. J. Chua, J. Li and K. L. Zhang, 2011. Development of micro power generators – A review. Appl. Energy. 88 (1):1–16. doi:10.1016/j.apenergy.2010.07.010
  • Eckel, Z. C., C. Zhou, J. H. Martin, A. J. Jacobsen, W. B. Carter and T. A. Schaedler, 2015. Additive manufacturing of polymer-derived ceramics. Science. 351 (6268):58–62. doi:10.1126/science.aad2688
  • Egolfopoulos, F. N., P. Cho, and C. K. Law. 1989. Laminar flame speeds of methane-air mixtures under reduced and elevated pressures. Combust. Flame. 76 (76):375–91. doi:10.1016/0010-2180(89)90119-3.
  • Ellzey, J. L., E. L. Belmont, and C. H. Smith. 2019. Heat recirculating reactors: Fundamental research and applications. Prog. Energy Combust. Sci. 72:32–58. doi:10.1016/j.pecs.2018.12.001.
  • Ernstberger, U., H. Cohrt, F. Porz, and F. Thümmler. 1983. Oxidation von Silizium-infiltriertem Siliziumkarbid. Berichte der DKG. 60:167–73.
  • Evans, R.S., Bourell, D.L., Beaman, J.J. and Campbell, M.I., 2003. Reaction bonded silicon carbide: SFF, process refinement and applications. In 2003 International Solid Freeform Fabrication Symposium
  • Gentillon, P., J. Southcott, Q. N. Chan, and R. A. Taylor. 2018. Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina. Appl. Energy. 229:736–44. doi:10.1016/j.apenergy.2018.08.048.
  • Gonzalez-Gutierez, J., D. Godec, R. Guráň, M. Spoerk, C. Kukla and C. Holzer, 2018. 3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts. Metalurgija. 11 (57):117–20
  • Goodwin, D. G., H. K. Moffat, and R. L. Speth, 2017. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes http://www.cantera.org. Version 2.3.0: doi:10.5281/zenodo.170284.[Accessed 1 March 2021]
  • Hardesty, D. R., and F. J. Weinberg. 1973. Burners producing large excess enthalpies. Combust. Sci. Technol. 8 (5–6):201–14. doi:10.1080/00102207308946644.
  • Jones, A. R., S. A. Lloyd, and F. J. Weinberg. 1978. Combustion in heat exchangers. Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 360, no. 1700, pp. 97–115
  • Kennedy, L. A., J. P. Bingue, A. V. Saveliev, A. A. Fridman and S. I. Foutko, 2000. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. Proc. Combust. Inst. 28 (1):1431–38. doi:10.1016/S0082-0784(00)80359-8
  • Kennedy, P., and J. V. Shennan. 1974. Engineering applications of REFEL Silicon Carbide. in Silicon carbide 1973,R.C.Marhall et al. (Eds), Univ. of South Carolina Press, Columbia, 1974, pp. 359–366
  • Kim, T. Y., H. K. Kim, J. W. Ku, and O. C. Kwon. 2017. A heat-recirculating combustor with multiple injectors for thermophotovoltaic power conversion. Appl. Energy. 193:174–81. doi:10.1016/j.apenergy.2017.02.040.
  • Law, C. K. 2006. Combustion physics. Cambridge: Cambridge University Press.
  • Maruta, K. 2011. Micro and mesoscale combustion. Proc Combust Inst. 33 (1):125–50. doi:10.1016/j.proci.2010.09.005.
  • Mathis, W. M., and J. L. Ellzey. 2003. Flame stabilization, operating range, and emissions for a methane/air porous burner. Combust. Sci. Technol 175 (5):825–39. doi:10.1080/00102200302411.
  • Matkowsky, B. J., and G. I. Sivashinsky. 1979. An asymptotic derivation of two models in flame theory associated with the constant density approximation. SIAM J. Appl. Math. 37 (3):686–99. doi:10.1137/0137051.
  • Mei, H., R. Zhao, Y. Xia, J. Du, X. Wang and L. Cheng, 2019. Ultrahigh strength printed ceramic lattices. J. Alloy. Comp. 797:786–96. doi:10.1016/j.jallcom.2019.05.117
  • Moon, D. J., J. W. Ryu, S. D. Lee, B. G. Lee and B. S. Ahn, 2004. Ni-based catalyst for partial oxidation reforming of iso-octane. Appl. Catal. A: General. 272 (1–2):53–60. doi:10.1016/j.apcata.2004.05.009
  • Mujeebu, A. M. 2016. Hydrogen and syngas production by superadiabatic combustion - a review. Appl. Energy. 173 (173):210–24. doi:10.1016/j.apenergy.2016.04.018.
  • Putnam, A. A. 1971. Combustion-Driven Oscillations in Industry. New York: American Elsevier Pub.Co.
  • Radyjowski, P. R., S. R. Newcomb, and J. L. Ellzey, 2017. Design of complex reactors using additive manufacturing. 10th U.S. National Combustion Meeting, College Park, MD April 23- 25.
  • Richards, G. A., D. L. Straub, and E. H. Robey. 2003. Passive control of combustion dynamics in stationary gas turbines. J. Propuls. Power. 19 (5):795–810. doi:10.2514/2.6195.
  • Ronney, P. D. 2003. Analysis of non-adiabatic heat-recirculating combustors. Combust. Flame. 135 (4):421–39. doi:10.1016/j.combustflame.2003.07.003.
  • Schmidt, M., M. Merklein, D. Bourell, D. Dimitrov, T. Hausotte, K. Wegener, L. Overmeyer, F. Vollertsen and G. N. Levy 2017. Laser based additive manufacturing in industry and academia. CIRP Ann. 66: 561–83
  • Schoegl, I., and J. L. Ellzey. 2007. Superadiabatic combustion in conducting tubes and heat exchangers of finite length. Combust. Flame. 151 (1–2):142–59. doi:10.1016/j.combustflame.2007.01.009.
  • Schoegl, I., and J. L. Ellzey. 2009. A mesoscale fuel reformer to produce syngas in portable power systems. Proc. Combust. Inst. 32 (2):3223–30. doi:10.1016/j.proci.2008.06.079.
  • Schoegl, I. M., and J. L. Ellzey. 2010. Numerical Investigation of Ultra-Rich Combustion in Counter Flow Heat Exchangers. Combust. Sci. Technol. 182 (10):1413–28. doi:10.1080/00102202.2010.481645.
  • Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, T., Hanson, R., Song, S., Gardiner, W., Lissianski, V. and Qin, Z., 2000. GRI-MECH 3.0. http://combustion.berkeley.edu/gri-mech/version30/text30.html [Accessed 1 March 2021
  • Stevinson, B., D. Bourell, and J. Beaman. 2008. Over-infiltration mechanisms in selective laser sintered Si/SiC preforms. Rapid Prototyp. J.5. 14 (3):149–54. doi:10.1108/13552540810878003.
  • Takeno, T., and K. Hase. 1983. Effects of solid length and heat loss on an excess enthalpy flame. Combust. Sci. Technol. 31 (3–4):207–15. doi:10.1080/00102208308923642.
  • Takeno, T., and K. Sato. 1979. An excess enthalpy flame theory. Combust. Sci. Technol. 20 (1–2):73–84. doi:10.1080/00102207908946898.
  • UCSD, 2016. Chemical-kinetic mechanisms for combustion applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research). University of California at San Diego, http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html [Accessed 1 March 2021]
  • Weinberg, F. 1996. Heat-recirculating burners: Principles and some recent developments. Combust. Sci. Technol. 121 (1–6):3–22. doi:10.1080/00102209608935584.
  • Weinberg, F. J. 1971. Combustion temperatures: The future? Nature 233 (233):239–41. doi:10.1038/233239a0.
  • Wood, S., and A. T. Harris. 2008. Porous burners for lean-burn applications. Prog. Energy Combust. Sci. 34 (5):667–84. doi:10.1016/j.pecs.2008.04.003.
  • Wu, H., Y. J. Kim, V. Vandadi, C. Park, M. Kaviany and O. C. Kwon, 2015. Experiment on superadiabatic radiant burner with augmented preheating. Appl. Energy. 156:390–97. doi:10.1016/j.apenergy.2015.07.062
  • Zhang, Y., C.-Y. Hsu, S. Aubuchon, P. Karandikar and C. Ni, 2018. Microstructural and thermal property evolution of reaction bonded silicon carbide (RBSC). J. Alloys Compd. 764:107–11. doi:10.1016/j.jallcom.2018.05.321
  • Zhao, D., C. Ji, X. Li, and S. Li. 2015. Mitigation of premixed flame-sustained thermoacoustic oscillations using an electrical heater. Int. J. Heat Mass Transf. 86:309–18. doi:10.1016/j.ijheatmasstransfer.2015.03.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.