2,753
Views
8
CrossRef citations to date
0
Altmetric
Research Article

The Impact of Fuelwood Moisture Content on the Emission of Gaseous and Particulate Pollutants from a Wood Stove

, , , , , , & show all
Pages 133-152 | Received 07 Feb 2021, Accepted 01 Jun 2021, Published online: 17 Jun 2021

References

  • Alves, C., C. Gonçalves, A. P. Fernandes, L. Tarelho, and C. Pio. 2011. Fireplace and woodstove fi ne particle emissions from combustion of western Mediterranean wood types. Atmos. Res. 101 (3):692–700.
  • Amann, M. (Ed.), Measures to address air pollution from small combustion sources, Report to the European Commission, 2018
  • Atiku, F. A., E. J. S. Mitchell, J. M. Jones, A. Williams, and K. D. Bartle. 2016. The impact of fuel properties on the composition of soot produced by the combustion of residential solid fuels in a domestic stove. Fuel Process. Technol. 151:117–25.
  • Bugge, M., and N. E. L. Haugen 2014. NOx emissions from wood stoves - a CFD modelling approach: Proc. of 22nd EU BC&E., 674–79.
  • Bugge, M., Ø. Skreiberg, N. E. L. Haugen, and P. Carlsson. 2020. Predicting NOx emissions from wood stoves using detailed chemistry and computational fluid dynamics. Energy Procedia. 75 (1876):1740–45.
  • Chomanee, J., S. Tekasakul, P. Tekasakul, and M. Furuuchi. 2015. Effects of moisture content and burning period on concentration of smoke particles and particle-bound polycyclic aromatic hydrocarbons from rubber. Aerosol. Air. Qual. Res. 9:404–11.
  • Denier Van Der Gon, H. A. C., R. Bergström, C. Fountoukis, C. Johansson, S. N. Pandis, D. Simpson, and A. J. H. Visschedijk. 2015. Particulate emissions from residential wood combustion in Europe – Revised estimates and an evaluation. Atmos. Chem. Phys. 15:6503–19.
  • Dippel, B., H. Jander, and J. Heintzenberg. 1999. NIR FT Raman spectroscopic study of flame soot. Phys. Chem. Chem. Phys. 1:4707–12.
  • EMEP. 2020. European Monitoring and Evaluation Programme (EMEP) Technical Report MSC-W 4/2020, How should condensables be included in PM emission inventories reported to EMEP/CLRTAP? Report of the expert workshop on condensable organics organised by MSC-W, Gothenburg, 17-19th March 2020. FULLTEXT01.pdf (diva-portal.org).
  • Ess, M. N., D. Ferry, E. D. Kireeva, R. Niessner, F. Ouf, and N. P. Ivleva. 2016. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: Structural changes during heating. Carbon 105:572–85. doi:10.1016/j.carbon.2016.04.056.
  • EU, 2018. European environment agency, sector share for emissions of primary PM2.5 and PM10 particulate matter, www.eea.europa.eu
  • Fachinger, F., F. Drewnick, R. Giere, and S. Borrmann. 2017. How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions. Atmos. Environ. 158:216–26.
  • Ferrari, A. C., and J. Robertson. 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Am. Phys. Soc. Phys. Rev B 61 (20):14095–107.
  • Friedl, A., E. Padouvas, H. Rotter, and K. Varmuza. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544 (1–2):191–98.
  • Glarborg, P., A. D. Jensen, and J. E. Johnsson. 2003. Fuel nitrogen conversion in solid fuel fired systems. Prog. Energy Combust. Sci. 29 (2):89–113.
  • Houck, J. E., and P. E. Tiegs 1998. Residential wood combustion technical review: Volume 1. Technical Report [Online]. https://www3.epa.gov/ttnchie1/ap42/ch01/related/woodstove.pdf.
  • Houmoller, S., and A. Evald 1999. Sulphur balances for biofuel combustion systems In: Proceedings 4th Biomass Conference of the Americas. Eds. Overend,R.P. and Chornet, E. Pergamon.
  • Ivleva, N. P., U. Mckeon, R. Niessner, and U. Pöschl. 2007. Raman microspectroscopic analysis of size- resolved atmospheric aerosol particle samples collected with an ELPI: Soot, humic-like substances, and inorganic compounds raman microspectroscopic analysis of size-resolved atmospheric aerosol particle sample. Aerosol Sci. Technol. 41 (7):655–71.
  • Jones, J. M., E. J. S. Mitchell, A. Williams, E. Kumi-Barimah, G. Jose, K. D. Bartle, N. Hondow, and A. R. Lea-Langton. 2020. Examination of combustion-generated smoke particles from biomass at source: relation to atmospheric light absorption. Combust. Sci. Technol. 192:130–43.
  • Kim, K.-H., E. Kabir, and S. Kabir. 2015. A review on the human health impact of airborne particulate matter. Environ Int 74:136–43.
  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109:D21208.
  • Koppmann, R., K. Von Czapiewski, and J. S. Reid. 2005. A review of biomass burning emissions, part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos. Chem. Phys. 5:10455–512.
  • Li, X. H., S. X. Wang, L. Duan, J. M. Hao, and Y. F. Nie. 2009. Carbonaceous aerosol emissions from household biofuel combustion in China. Environ. Sci. Technol. 43:6076–81.
  • Linjewile, T. M., V. S. Gururajan, K. Pradeep, and P. K. Agarwal. 1993. Measurement and modelling of the temperature of burning petroleum coke particles in an incipiently fluidized bed. Fuel 72:813–19.
  • Liu, C., C. E. Chung, F. Zhang, and Y. Yin. 2016. The color of biomass burning aerosols in the atmosphere. Sci. Rep 6:28267. .
  • Liu., C., C. E. Chung, Y. Yin, and M. Schnaiter. 2018. The absorption angstrom exponent of black carbon: From numerical aspects. Atmos. Chem. Phys 18:6259–73.
  • Lu, H., L. Zhu, and N. Zhu. 2009. Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos. Environ. 43:978–83. .
  • Magnone, E., S. Park, and J. H. Park. 2016. Effects of moisture contents in the common Oak on carbonaceous aerosols generated from combustion processes in an indoor wood stove. Combust. Sci. Technol. 188:982–96.
  • Maxwell, D., B. Gudka, A. Price-Allison, J. M. Jones, and A. Williams. 2019. Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel Process. Technol. 199 (2020):106266.
  • Mitchell, E. J. S., A. R. Lea-Langton, J. M. Jones, A. Williams, P. Layden, and R. Johnson. 2016. The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Process. Technol. 142:115–123. .
  • Mitchell, E. J. S., Y. Ting, J. Allan, D. V. Spracklen, G. Mcfiggans, H. Coe, M. N. Routledge, A. Williams, J. M. Jones, Y. Ting, et al. 2019. Pollutant emissions from improved cookstoves of the type used in Sub-Saharan Africa. Combust. Sci. Technol. 192:1582–602.
  • Nishad., P. P., and R. M. Chezian. 2013. Various colour spaces and colour space conversion algorithms. J. Global Res. Comput. Sci. 4:44–48.
  • Price-Allison, A., A. R. Lea-Langton, E. J. S. Mitchell, B. Gudka, J. M. Jones, P. E. Mason, and A. Williams. 2019. Emissions performance of high moisture wood fuels burned in a residential stove. Fuel 239:1038–45.
  • Purvis, C. R., and R. C. McCrillis. 2000. Fine particulate matter (PM) and organic speciation of fireplace emissions. Environ. Sci. Technol. 34:1653–58.
  • Rau, J. A. 1989. Composition and size distribution of residential wood smoke particles. Aerosol Sci. Technol. 10:181–92. .
  • Reid, J. S., R. Koppmann, T. F. Eck, and D. P. Eleuterio. 2005. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5:799–825.
  • Sadezky, A., H. Mucjenhuber, H. Grothe, R. Niessner, and U. Poschl. 2005. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43:731–1742.
  • Shen, G., S. Wei, W. Wei, Y. Zhang, Y. Min, B. Wang, R. Wang, W. Li, H. Shen, Y. Huang, et al. 2012. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China. Environ. Sci. Technol. 46 (7):4207–14.
  • Shen, G., M. Xue, S. Wei, Y. Chen, Q. Zhao, B. Li, H. Wu, and S. Tao. 2013. Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J. Environ. Sci. 25:1808–16.
  • Simoneit, B. R. T. 2002. Biomass burning - A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17:129–62.
  • Torvela, T., J. Tissari, O. Sippula, T. Kaivosoja, J. Leskinen, A. Virén, A. Lähde, and J. Jokiniemi. 2014. Effect of wood combustion conditions on the morphology of freshly emitted fine particles. Atmos. Environ. 87:2014.
  • UK Government. 2020. Emissions of air pollutants in the UK, 1970 to 2018 – Particulate matter (PM10 and PM2.5), Department for Environment Food & Rural Affairs, 24 September. www.gov.uk/government/publications
  • Vakkilainen, E. K. 2017. Steam generation from biomass. Oxford: Butterworth-Heinemann.
  • Wilton, E., and J. Bluett 2012. Factors influencing particulate emissions from NEW compliant woodburners in Nelson, Rotorua and Taumarunui 2007, NIWA, Auckland, New Zealand
  • Yan, W., K. Li, X. Huang, L. Yu, C. Lou, and Y. Chen. 2020. Online measurement of the flame temperature and emissivity during biomass volatile combustion using spectral thermometry and image thermometry. Energy Fuels 34:907–19.
  • Yokelson, R. J., D. W. Griffith, and D. E. Ward. 1996. Open-path Fourier transform infrared studies of large-scale laboratory biomass fires. J. Geophys. Res. 101 (D15):21,067–21,080.
  • Zhao, W., Z. Li, G. Zhao, F. Zhang, and Q. Zhu. 2008. Effect of air preheating and fuel moisture on combustion characteristics of corn straw in a fixed bed. Energy Convers. Manage. 49:3560–65