343
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study on Passive Control of the Self-excited Thermoacoustic Oscillations Occurring in Combustion Systems

, , , &
Pages 184-211 | Received 02 Sep 2020, Accepted 02 Jun 2021, Published online: 14 Jun 2021

References

  • Aggarwal, S. K. 2009. Structure of unsteady partially premixed flames and the existence of state relationships. Int. J. Spray Combust. Dyn. 1 (3):339–63. doi:10.1260/175682709789141537.
  • Almeida, Y. P., P. L. C. Lage, and L. F. L. R. Silva. 2015. Large eddy simulation of a turbulent diffusion flame including thermal radiation heat transfer. Appl. Therm. Eng. 81:412–25.
  • Armitage, C. A., R. Balachandran, E. Mastorakos, and R. S. Cant. 2006. Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 146:419–36.
  • Bomberg, S., T. Emmert, and W. Polifke 2015. Thermal versus acoustic response of velocity sensitive premixed flames. Proceedings of the Combustion Institute, California, USA, 35, 3185–92.
  • Chakravarthy, S. R., R. Sampath, and V. Ramanan. 2016. Dynamics and diagnostics of flame-acoustic interactions. Combust. Sci. Technol. 189:395–437.
  • Chatterjee, P., U. Vandsburger, W. R. Saunders, V. K. Khanna, and W. T. Baumann. 2005. On the spectral characteristics of a self-excited rijke tube combustor—numerical simulation and experimental measurements. J. Sound Vib. 283:573–88.
  • Chen, L.-W., and Y. Zhang. 2015. Experimental observation of the nonlinear coupling of flame flow and acoustic wave. Flow Meas. Instrum. 46:12–17.
  • Cho, S., and S. Lee. 1999. Characteristics of thermoacoustic resonance in a ducted burner. J. Acoust. Soc. Am. 105:3584–87.
  • Chui, E. H., and G. D. Raithby. 1993. Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numer. Heat Transfer, Part B 23:269–88.
  • Dawson, S., and J. A. Fitzpatrick. 2000. Measurement and analysis of thermoacoustic oscillations in a simple dump combustor. J. Sound Vib. 230:649–60.
  • Deshmukh, N. N., and S. D. Sharma. 2017. Suppression of thermo-acoustic instability using air injection in horizontal rijke tube. J. Energy Inst. 90:485–95.
  • Ditaranto, M., and J. Hals. 2006. Combustion instabilities in sudden expansion oxy–fuel flames. Combust. Flame 146:493–512.
  • Dowling, A. P., and A. S. Morgans. 2005. Feedback control of combustion oscillations. Annu Rev Fluid Mech 37:151–82.
  • Dubey, A. K., Y. Koyama, N. Hashimoto, and O. Fujita. 2019. Experimental and theoretical study of secondary acoustic instability of downward propagating flames: Higher modes and growth rates. Combust. Flame 205:316–26.
  • Ghirardo, G., M. P. Juniper, and M. R. Bothien. 2018. The effect of the flame phase on thermoacoustic instabilities. Combust. Flame 187:165–84.
  • Ghose, P., J. Patra, A. Datta, and A. Mukhopadhyay. 2014. Effect of air flow distribution on soot formation and radiative heat transfer in a model liquid fuel spray combustor firing kerosene. Int J Heat Mass Transf 74:143–55.
  • Guan, Y., V. Gupta, K. Kashinath, and L. K. B. Li 2019. Open-loop control of periodic thermoacoustic oscillations: Experiments and low-order modelling in a synchronization framework. Proceedings of the Combustion Institute, Dublin, Ireland, 37, 5315–23.
  • Harvey, A. D., and S. E. Rogers. 1996. Steady and unsteady computation of impeller-stirred reactors. AIChE J. 42:2701–12.
  • Huang, Y., and V. Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35:293–364.
  • Huber, A., and W. Polifke. 2008. Impact of fuel supply impedance on combustion stability of gas turbines. In 53rd ASME Turbo Expo 2008. Berlin, Germany: 51193.
  • Kashinath, K., L. K. B. Li, and M. P. Juniper. 2018. Forced synchronization of periodic and aperiodic thermoacoustic oscillations: Lock-in, bifurcations and open-loop control. J Fluid Mech 838:690–714.
  • Kim, M.-K., J. Yoon, S. Park, M.-C. Lee, and Y. Yoon. 2013. Effects of unstable flame structure and recirculation zones in a swirl-stabilized dump combustor. Appl. Therm. Eng. 58:125–35.
  • Lamraoui, A., F. Richecoeur, T. Schuller, and S. Ducruix. 2011. A methodology for on the fly acoustic characterization of the feeding line impedances in a turbulent swirled combustor. J. Eng. Gas Turbines Power 133:011504.
  • Liu, X., C. A. Wang, Q. Lv, T. Zhu, D. Li, Y. Du, and D. Che. 2018. Effects of o2 feeding strategy and over-fire air configuration on oxy-fuel combustion characteristics in an opposed wall-fired utility boiler. Energy Fuels 32:2479–89.
  • Matveev, K. I., and F. E. C. Culick. 2003a. A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175:1059–83.
  • Matveev, K. I., and F. E. C. Culick. 2003b. A study of the transition to instability in a rijke tube with axial temperature gradient. J. Sound Vib. 264:689–706.
  • Mongia, H. C., T. J. Held, G. C. Hsiao, and R. P. Pandalai. 2003. Challenges and progress in controlling dynamics in gas turbine combustors. J. Propul. Power 19:822–29.
  • Murthy, J. Y., and S. R. Mathur. 1998. Finite volume method for radiative heat transfer using unstructured meshes. J. Thermophys Heat Transfer 12:313–21.
  • Noiray, N., D. Durox, T. Schuller, and S. Candel 2007. Passive control of combustion instabilities involving premixed flames anchored on perforated plates. Proceedings of the Combustion Institute, Heidelberg, Germany, 31, 1283–90.
  • Noiray, N., D. Durox, T. Schuller, and S. Candel 2009. Dynamic phase converter for passive control of combustion instabilities. Proceedings of the Combustion Institute, Montreal, Canada, 32, 3163–70.
  • Oh, S., J. Kim, and Y. Kim. 2018. Analysis for combustion instability and stabilization characteristics in a swirled premixed combustor with a slotted plate. J. Eng. Gas Turbines Power Trans. ASME 140:091501.
  • Paschereit, C. O., E. Gutmark, and W. Weisenstein. 2007. Structure and control of thermoacoustic instabilities in a gas-turbine combustor. Combust. Sci. Technol. 138:213–32.
  • Poinsot, T. 2017. Prediction and control of combustion instabilities in real engines. Proceedings of the Combustion Institute, Seoul, South Kerean, 36, 1–28.
  • Prieler, R., M. Demuth, D. Spoljaric, and C. Hochenauer. 2014. Evaluation of a steady flamelet approach for use in oxy-fuel combustion. Fuel 118:55–68.
  • Rayleigh, L. 1878. The explanation of certain acoustical phenomena. Nature 18:319–21.
  • Saunders, W. R., L. Nord, C. A. Fanin, H. Ximing, W. T. Baumann, U. Vandsburger, V. K. Khanna, L. C. Haber, B. Eisenhower, and L. S. July 1999. Diagnostics and modeling of acoustic signatures in a tube combustor. 6th International Conference on Sound and Vibration, Copenhagen, Denmark, 3377–84.
  • Saurabh, A., and C. O. Paschereit. 2018. Premixed flame dynamics in response to two-dimensional acoustic forcing. Combust. Sci. Technol. 191:1184–200.
  • Scarinci, T., and C. Freeman. 2000. The propagation of a fuel-air ratio disturbance in a simple premixer and its influence on pressure wave amplification. In The 45th ASME International Gas Turbine & Aeroengine Technical Congress. Munich, Germany.
  • Shahi, M., J. B. W. Kok, J. C. R. Casado, and A. K. Pozarlik. 2014. Assessment of thermoacoustic instabilities in a partially premixed model combustor using urans approach. Appl. Therm. Eng. 71:276–90.
  • Silva, C. F., T. Emmert, S. Jaensch, and W. Polifke. 2015. Numerical study on intrinsic thermoacoustic instability of a laminar premixed flame. Combust. Flame 162:3370–78.
  • Smith, T. F., Z. F. Shen, and J. N. Friedman. 1982. Evaluation of coefficients for the weighted sum of gray gases model. J Heat Transfer 104:602–08.
  • Sohn, C. H., and J. H. Park. 2011. A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators. Aerosp. Sci. Technol. 15:606–14.
  • Steele, R. C., L. H. Cowell, S. M. Cannon, and C. E. Smith. 2000. Passive control of combustion instability in lean premixed combustors. J. Eng. Gas Turbines Power Trans. ASME 122:412–19.
  • Straub, D. L., and G. A. Richards. 1998. Effect of fuel nozzle configuration on premix combustion dynamics. International Gas Turbine and Aeroengine Congress and Exhibition. Stockholm, Sweden.
  • Uhm, J. H., and S. Acharya. 2004. Control of combustion instability with a high-momentum air-jet. Combust. Flame 139:106–25.
  • Wu, G., Z. Lu, Y. Guan, Y. Li, and C. Z. Ji. 2018a. Characterizing nonlinear interaction between a premixed swirling flame and acoustics: Heat-driven acoustic mode switching and triggering. Energy 158:546–54.
  • Wu, G., Z. Lu, W. Pan, Y. Guan, and C. Z. Ji. 2018b. Numerical and experimental demonstration of actively passive mitigating self-sustained thermoacoustic oscillations. Appl. Energy 222:257–66.
  • Yazar, I., F. Caliskan, and R. Vepa. 2018. Influence of flame dynamics on the optimal control of combustion with uncertainties. Combust. Sci. Technol. 190:983–1006.
  • Zalluhoglu, U., and N. Olgac. 2016. A study of Helmholtz resonators to stabilize thermoacoustically driven pressure oscillations. J. Acoust. Soc. Am. 139:1962–73.
  • Zhang, Y., C. A. Wang, X. Liu, and D. Che. 2019. Numerical study of the self-excited thermoacoustic vibrations occurring in combustion system. Appl. Therm. Eng. 160:113994.
  • Zhao, D., and J. Li. 2012. Feedback control of combustion instabilities using a Helmholtz resonator with an oscillating volume. Combust. Sci. Technol. 184:694–716.
  • Zhao, D., and X. Y. Li. 2015. A review of acoustic dampers applied to combustion chambers in aerospace industry. Prog. Aerosp. Sci. 74:114–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.