257
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A comparison of partially premixed methane/air combustion in confined vane-swirl and jet-swirl combustors

, , &
Pages 212-231 | Received 22 Jan 2021, Accepted 11 Jun 2021, Published online: 27 Jun 2021

References

  • http://web.aeromech.usyd.edu.au/thermofluids/swirl.php
  • http://combustion.berkeley.edu/gri-mech/version30/text30.html
  • Azam, E.S., M.M. Kamal, and H.A. Abotaleb. 2016. Combustion performance of triple flames issuing from elliptical Swirlers. IOSR J.Eng. 6:13–21.
  • Candel, S., D.Durox, T.Schuller, J.Bourgouin, and J.P. Moeck. 2014. Dynamics of Swirling Flames. Annu. Rev. Fluid Mech. 46(1):147–73. doi: 10.1146/annurev-fluid-010313-141300.
  • Cavazzuti, M., and M.A. Corticelli. 2017. Convective heat transfer of turbulent decaying swirled flows in concentric annular pipes. Appl. Therm. Eng. 120:517–29. doi:10.1016/j.applthermaleng.2017.04.015.
  • Dan, R., Q. Yan-yong, and L. Hui-dong. 2016. Numerical simulation research of the reduction of NO by CO at high temperature without catalyst. Bull. Chin. Ceram. Soc. 35(6):1674–81.
  • Deng, Y., H.Wu, and F.Su. 2017. Combustion and exhaust emission characteristics of low swirl injector. Appl. Therm. Eng. 110:171–80. doi:10.1016/j.applthermaleng.2016.08.169.
  • Dhanuka, S.K., J.E. Temme, and J.F. Driscoll. 2011. Lean-limit combustion instabilities of aleanpremixed prevaporized gas turbine combustor. Proc. Combust. Inst. 33(2):2961–66. doi:10.1016/j.proci.2010.07.011.
  • Dwyer, H.A., and T.Hasegawa. 2002. Some flows associated with premixed laminar flame propagation in arotating tube flow. Proc. Combust. Inst. 29(2):1471–77. doi: 10.1016/S1540-7489(02)80180-8.
  • Ebi, D., and N.T. Clemens. 2016. Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames. Combustion Flame 168:39–52. doi:10.1016/j.combustflame.2016.03.027.
  • Elgamal, G., M.M. Kamal, and A.M. Abdulaziz. 2013. Swirl and cross-flow effects on vitiated jet flames. Combustion Sci. Technol. 185(2):310–35. doi:10.1080/00102202.2012.718007.
  • Fahmy, A., H.A. Abotaleb, and M.M. Kamal. 2016. Combustion Characteristics of Inverse Diffusion Flames with Elliptic Swirlers. IOSR J.Eng. 6:27–44.
  • Feikema, D., R.Chen, and J.F. Driscoll. 1990. Enhancement of flame blowout limits by the use of swirl. Combustion Flame 80(2):183–95. doi: 10.1016/0010-2180(90)90126-C.
  • Hirsch, C., D.Fanaca, P.Reddy, W.Polifke, and T.Sattelmayer. 2005. Influence of the swirler design on the flame transfer function of premixed flames.). Reno-Tahoe, NV, United states: American Society of Mechanical Engineers.
  • Huang, Y., and V.Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35:293–364.
  • Ishizuka, S. 1985. On the behavior of premixed flames in arotating flow field: Establishment of tubular flames. Symposium (International) on Combustion, 20, 287–94.
  • Ishizuka, S. 1993. Characteristics of tubular flames. Prog. Energy Combust. Sci. 19(3):187–226. doi: 10.1016/0360-1285(93)90015-7.
  • Ishizuka, S. &D. Dunn-Rankin. 2013. Tubular combustion. NewYork: Momentum Press.
  • Ismael, A.M., M.F. Abdelkhalek, and M.M. Kamal 2013. Combustion performance of eccentrically rotated flames. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227, 593–611.
  • Johnson, M.R., D.Littlejohn, W.A. Nazeer, K.O. Smith, and R.K. Cheng 2005. Acomparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proceedings of the Combustion Institute, 30, 2867–74.
  • Kamal, M.M. 2008. Combustion characteristics of pulverized coal and air/gas premixed flame in adouble swirl combustor. Combustion Sci. Technol. 181(1):136–58. doi:10.1080/00102200802483597.
  • KAMAL, M.M., and A.A. MOHAMAD. 2006. Effect of swirl on performance of foam porous medium burners. Combustion Sci. Technol. 178(4):729–61. doi:10.1080/00102200500248482.
  • Kashkousha, O.A., M.M. Kamal, A.M. Abdulaziz, and M.A. Nosier. 2012. Concentric elliptical jet diffusion flames with co- and cross-flows. Exp. Therm. Fluid. Sci. 41:177–87. doi:10.1016/j.expthermflusci.2012.03.033.
  • Kashkousha, O.A., M.M. Kamal, A.M. Abdulaziz, and M.A. Nosier 2015. Inverse diffusion and partially premixed flames with elliptical/swirling- and cross-flows. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 229, 44–59.
  • Li, B., B.Shi, X.Zhao, K.Ma, D.Xie, D.Zhao, etal. 2018. Oxy-fuel combustion of methane in aswirl tubular flame burner under various oxygen contents: Operation limits and combustion instability. Exp. Therm. Fluid. Sci. 90:115–24. doi:10.1016/j.expthermflusci.2017.09.001.
  • Lilley, D.G. 1977. Swirl flows in combustion: A review. AIAA J. 15(8):1063–78. doi:10.2514/3.60756.
  • Liu, V.W., A.A. Mohamad, and M.M. Kamal. 2007. Pollution reduction from flares by swirl vanes in a cross-flow. Int. J.Environ. Pollut. 31(1/2):193. doi:10.1504/IJEP.2007.015675.
  • Masri, A.R., P.A.M. Kalt, and R.S. Barlow. 2004. The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combustion Flame 137(1–2):1–37. doi:10.1016/j.combustflame.2003.12.004.
  • McAllister, S., J.Chen, and A.C. Fernandez-Pello. 2011. Fundamentals of combustion processes. NewYork: Springer.
  • Mohy, M., H.E. Saad, and M.M. Kamal. 2016. Effect of the degree of ellipticity on the combustion performance using Elliptic double swirlers. IOSR J.Eng. 6:13–21.
  • Nebel, G.J., and M.W. Jackson. 1958. Some factors affecting the concentration of oxides of nitrogen in exhaust gases from spark ignition engines. J.Air Pollut. Control Assoc. 8(3):213–19. doi:10.1080/00966665.1958.10467847.
  • Palies, P., D.Durox, T.Schuller, and S.Candel. 2010. The combined dynamics of swirler and turbulent premixed swirling flames. Combustion Flame 157(9):1698–717. doi:10.1016/j.combustflame.2010.02.011.
  • Patel, V., and R.Shah. 2018. Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl. Appl. Therm. Eng. 137:377–85. doi:10.1016/j.applthermaleng.2018.03.105.
  • Petrov, C.A., and A.F. Ghoniem. 1998. Dynamics and structure of interacting nonpremixed flames. Combustion Flame 115(1–2):180–94. doi: 10.1016/S0010-2180(97)00365-9.
  • Puranam, S.V., J.Arici, N. Sarzi-Amade, D. Dunn-Rankin, and W.A. Sirignano 2009. Turbulent combustion in acurving, contracting channel with acavity stabilized flame. Proceedings of the Combustion Institute, 32, 2973–81.
  • Saad, H.E., M.Kamal, and A.Adel 2019. Thermal and combustion characteristics of adouble ring burner with different swirling flow patterns. IOP Conference Series: Materials Science and Engineering, 610, 012042.
  • Santhosh, R., and S.Basu. 2016. Transitions and blowoff of unconfined non-premixed swirling flame. Combustion Flame 164:35–52. doi:10.1016/j.combustflame.2015.10.034.
  • Schneider, C., A.Dreizler, and J.Janicka. 2005. Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Appl. Sci. Res. 74(1):103–27. doi:10.1007/s10494-005-7369-z.
  • Scotti, A., and U.Piomelli. 2002. Turbulence models in pulsating flows. AIAA J. 40(3):537–44. doi:10.2514/2.1679.
  • Shahin, I., I.M.M. Elsemary, A.A. Abdel-Rehim, A.A.A. Attia, and K.H. Elnagar. 2016. Optimization of stepped conical swirler with multiple jets for pre-mixed turbulent swirl flames. Appl. Therm. Eng. 102:359–74. doi:10.1016/j.applthermaleng.2016.03.149.
  • Shi, B., J.Hu, and S.Ishizuka. 2015. Carbon dioxide diluted methane/oxygen combustion in arapidly mixed tubular flame burner. Combustion Flame 162(2):420–30. doi:10.1016/j.combustflame.2014.07.022.
  • Shi, B., J.Hu, H.Peng, and S.Ishizuka. 2014. Flow visualization and mixing in arapidly mixed type tubular flame burner. Exp. Therm. Fluid. Sci. 54:1–11. doi:10.1016/j.expthermflusci.2014.01.009.
  • Shi, B., D.Shimokuri, and S.Ishizuka 2013. Methane/oxygen combustion in arapidly mixed type tubular flame burner. Proceedings of the Combustion Institute, 34, 3369–77.
  • Shi, B., D.Shimokuri, and S.Ishizuka. 2014. Reexamination on methane/oxygen combustion in arapidly mixed type tubular flame burner. Combustion Flame 161(5):1310–25. doi:10.1016/j.combustflame.2013.11.001.
  • Steinberg, A.M., I.Boxx, M.Stöhr, C.D. Carter, and W.Meier. 2010. Flow–flame interactions causing acoustically coupled heat release fluctuations in athermo-acoustically unstable gas turbine model combustor. Combustion Flame 157(12):2250–66. doi:10.1016/j.combustflame.2010.07.011.
  • Stöhr, M., C.M. Arndt, and W.Meier 2013. Effects of Damköhler number on vortex–flame interaction in agas turbine model combustor. Proceedings of the Combustion Institute, 34, 3107–15.
  • Stöhr, M., I.Boxx, C.Carter, and W.Meier 2011. Dynamics of lean blowout of a swirl-stabilized flame in agas turbine model combustor. Proceedings of the Combustion Institute, 33, 2953–60.
  • Stopper, U., M.Aigner, H.Ax, W.Meier, R.Sadanandan, M.Stöhr, etal. 2010. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames. Exp. Therm. Fluid. Sci. 34(3):396–403. doi:10.1016/j.expthermflusci.2009.10.012.
  • Syred, N., and J.M. Beér. 1974. Combustion in swirling flows: A review. Combustion Flame 23(2):143–201. doi: 10.1016/0010-2180(74)90057-1.
  • Valera-Medina, A., N.Syred, and P.Bowen. 2013. Central recirculation zone visualization in confined swirl combustors for terrestrial energy. J.Propul. Power 29(1):195–204. doi:10.2514/1.B34600.
  • Vanoverberghe, K.P., E.V. Van Den Bulck, and M.J. Tummers. 2003. Confined annular swirling jet combustion. Combustion Sci. Technol. 175(3):545–78. doi:10.1080/00102200302388.
  • Weigand, P., W.Meier, X.R. Duan, W.Stricker, and M.Aigner. 2006. Investigations of swirl flames in agas turbine model combustor. Combustion Flame 144(1–2):205–24. doi:10.1016/j.combustflame.2005.07.010.
  • Zelina, J., R.T. Greenwood, and D.T. Shouse 2006. Operability and efficiency performance of ultra-compact, high gravity (g) combustor concepts. Proceedings of the ASME Turbo Expo, 1, 87–95.
  • Zhao, X., B.Shi, W.Peng, Q.Cao, D.Xie, W.Dong, N.Wang, etal. 2019. Effects of N2 and CO2 dilution on the combustion characteristics of C3H8/O2 mixture in aswirl tubular flame burner. Exp. Therm. Fluid. Sci. 100:251–58. doi:10.1016/j.expthermflusci.2018.09.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.