486
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Study on Multi-field Evolution and Influencing Factors of Coal Spontaneous Combustion in Goaf

ORCID Icon, , , , , & show all
Pages 247-264 | Received 22 Apr 2021, Accepted 20 Jun 2021, Published online: 30 Jun 2021

References

  • Azimifar, A., and S. Payan. 2016. Enhancement of heat transfer of confined enclosures with free convection using blocks with PSO algorithm. Appl. Therm. Eng. 101:79–91. doi:10.1016/j.applthermaleng.2015.11.122.
  • Bai, C., X. Chang, and B. Zhang. 2020. Impacts of turbulence on explosion characteristics of methane-air mixtures with different fuel concentration. Fuel 271:117610. doi:10.1016/j.fuel.2020.117610.
  • Che, Q., Z. Shu, X. Zhou, and H. Wang. 2011. Multi-field coupling laws of mixed gas in goaf. Process Eng 26:204–10.
  • Chen, D., W. Nie, P. Cai, and Z. Liu. 2018. The diffusion of dust in a fully-mechanized mining face with a mining height of 7 m and the application of wet dust-collecting nets. J. Clean. Prod. 205:463–76. doi:10.1016/j.jclepro.2018.09.009.
  • Cheng, J., C. Wang, and S. Zhang. 2012. Methods to determine the mine gas explosibility-an overview. J. Loss Prevent. Proc. 25 (3):425–35. doi:10.1016/j.jlp.2011.12.001.
  • Deng, J., Y. Xiao, Q. Li, J. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Guo, J., H. Wen, X. Zheng, Y. Liu, and X. Cheng. 2019. A method for evaluating the spontaneous ignition of coal by monitoring various gases. Process. Saf. Environ. 126:223–31. doi:10.1016/j.psep.2019.04.014.
  • Kundu, S., J. Zanganeh, and B. Moghtaderi. 2016. A review on understanding explosions from methane-air mixture. J. Loss Prevent. Proc. 40:507–23. doi:10.1016/j.jlp.2016.02.004.
  • Li, H., S. Shi, B. Lin, J. Lu, Y. Lu, Q. Ye, Z. Wang, Y. Hong, and X. Zhu. 2019a. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal. Fuel Process. Technol. 189:49–61. doi:10.1016/j.fuproc.2019.03.002.
  • Li, H., S. Shi, B. Lin, J. Lu, Q. Ye, Y. Lu, Z. Wang, Y. Hong, and X. Zhu. 2019b. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 187:115986. doi:10.1016/j.energy.2019.115986.
  • Li, L., B. Qin, J. Liu, and Y. Leong. 2020a. Integrated experimentation and modeling of the formation processes underlying coal combustion-triggered methane explosions in a mined-out area. Energy 203:117855. doi:10.1016/j.energy.2020.117855.
  • Li, L., B. Qin, D. Ma, H. Zhuo, H. Liang, and A. Gao. 2018. Unique spatial methane distribution caused by spontaneous coal combustion in coal mine goafs: An experimental study. Process Saf. Environ. 116:199–207. doi:10.1016/j.psep.2018.01.014.
  • Li, M., Y. Lu, S. Shi, H. Li, Z. Tian, Q. Ye, and J. Lu. 2021. Piezoelectric effect and ignition properties of coal mine roof sandstone deformation and fracture. Fuel 290:120007. doi:10.1016/j.fuel.2020.120007.
  • Li, S., C. An, H. Pan, H. Lin, and Y. Ding. 2014. Mechanism and prevention technology of gas explosion caused by coal spontaneous combustion in goaf. Safety in Coal Mines 45:24–31.
  • Li, Z., G. Ni, L. Sun, Q. Sun, S. Li, K. Dong, J. Xie, and G. Wang. 2020b. Effect of ionic liquid treatment on pore structure and fractal characteristics of low rank coal. Fuel 262:116513. doi:10.1016/j.fuel.2019.116513.
  • Liang, Y., and S. Wang. 2017. Prediction of coal mine goaf self-heating with fluid dynamics in porous media. Fire Saf. J. 87:49–56. doi:10.1016/j.firesaf.2016.12.002.
  • Liang, Y., J. Zhang, L. Wang, H. Luo, and T. Ren. 2019. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review. J. Loss Prevent. Proc. 57:208–22. doi:10.1016/j.jlp.2018.12.003.
  • Liu, T., B. Lin, X. Fu, Y. Gao, J. Kong, Y. Zhao, and H. Song. 2020. Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam. Energy 195:117005. doi:10.1016/j.energy.2020.117005.
  • Lu, P., G. Liao, J. Sun, and P. Li. 2004. Experimental research on index gas of the coal spontaneous at low-temperature stage. J. Loss Prevent. Proc. 17 (3):243–47. doi:10.1016/j.jlp.2004.03.002.
  • Ni, G., Q. Sun, M. Xun, H. Wang, Y. Xu, W. Cheng, and G. Wang. 2019. Effect of NaCl-SDS compound solution on the wettability and functional groups of coal. Fuel 257:116077. doi:10.1016/j.fuel.2019.116077.
  • Qin, B., L. Li, D. Ma, Y. Lu, X. Zhong, and Y. Jia. 2016. Control technology for the avoidance of the simultaneous occurrence of a methane explosion and spontaneous coal combustion in a coal mine: A case study. Process Saf. Environ. 103:203–11. doi:10.1016/j.psep.2016.07.005.
  • Qin, B., L. Zhang, D. Wang, and X. Qin. 2009. The characteristic of explosion under mine gas and spontaneous combustion coupling. Procedia Earth Planet. Sci. 1 (1):186–92. doi:10.1016/j.proeps.2009.09.031.
  • Qin, L., S. Li, C. Zhai, H. Lin, P. Zhao, Y. Shi, and Y. Bai. 2020. Changes in the pore structure of lignite after repeated cycles of liquid nitrogen freezing as determined by nitrogen adsorption and mercury intrusion. Fuel 267:117214. doi:10.1016/j.fuel.2020.117214.
  • Su, H., F. Zhou, X. Song, and Z. Qiang. 2017. Risk analysis of spontaneous coal combustion in steeply inclined longwall gobs using a scaled-down experimental set-up. Process Saf. Environ. 111:1–12. doi:10.1016/j.psep.2017.06.001.
  • Tutak, M., and J. Brodny. 2018. Impact of type of the roof rocks on location and range of endogenous fires particular hazard zone by in goaf with caving. E3S Web of Conferences 29:00005. doi:10.1051/e3sconf/20182900005.
  • Tutak, M., and J. Brodny. 2019. The impact of the strength of roof rocks on the extent of the zone with a high risk of spontaneous coal combustion for fully powered longwalls ventilated with the Y-type system—A case study. Appl. Sci. 9 (24):5315. doi:10.3390/app9245315.
  • Vanderstraeten, B., D. Tuerlinckx, J. Berghmans, S. Vliegen, E. Van’t Oost, and B. Smit. 1997. Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures. J. Hazard Mater. 56 (3):237–46. doi:10.1016/S0304-3894(97)00045-9.
  • Wang, C., S. Yang, and X. Li. 2018. Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob. Process Saf. Environ. 118:296–306. doi:10.1016/j.psep.2018.06.028.
  • Wen, H. 2004. Experiment simulation of whole process on coal self-ignition and study of dynamical change rule in high-temperature zone. J. China Coal Soc. 29:689–93.
  • Wen, H., Z. Yu, J. Deng, and X. Zhai. 2017. Spontaneous ignition characteristics of coal in a large-scale furnace: An experimental and numerical investigation. Appl. Therm. Eng. 114:583–92. doi:10.1016/j.applthermaleng.2016.12.022.
  • Xia, T., F. Zhou, F. Gao, J. Kang, J. Liu, and J. Wang. 2015. Simulation of coal self-heating processes in underground methane-rich coal seams. Int. J. Coal Geol. 141-142:1–12. doi:10.1016/j.coal.2015.02.007.
  • Xia, T., F. Zhou, X. Wang, J. Kang, and Z. Pan. 2017. Safety evaluation of combustion-prone longwall mining gobs induced by gas extraction: A simulation study. Process Saf. Environ. 109:677–87. doi:10.1016/j.psep.2017.04.008.
  • Xia, T., F. Zhou, X. Wang, Y. Zhang, Y. Li, J. Kang, and J. Liu. 2016. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 182:886–96. doi:10.1016/j.fuel.2016.05.090.
  • Yuan, L., and A. C. Smith. 2008. Numerical study on effects of coal properties on spontaneous heating in longwall gob areas. Fuel 87 (15–16):3409–19. doi:10.1016/j.fuel.2008.05.015.
  • Zhang, Y., Y. Zhang, Y. Li, Q. Li, J. Zhang, and C. Yang. 2020. Study on the characteristics of coal spontaneous combustion during the development and decaying processes. Process. Saf. Environ. 138:9–17. doi:10.1016/j.psep.2020.02.038.
  • Zhao, J., J. Deng, L. Chen, T. Wang, J. Song, Y. Zhang, C. Shu, and Q. Zeng. 2019a. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. Energy 181:136–47. doi:10.1016/j.energy.2019.05.158.
  • Zhao, J., J. Deng, T. Wang, J. Song, Y. Zhang, C. Shu, and Q. Zeng. 2019b. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169:587–96. doi:10.1016/j.energy.2018.12.100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.