253
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Ionic Wind Induced by DC Electric Field on Biogas/Air Turbulent Premixed Flame Structure

, ORCID Icon, , , &
Pages 294-312 | Received 07 Jul 2020, Accepted 22 Jun 2021, Published online: 05 Jul 2021

References

  • Altendorfner, F., J. Kuhl, L. Zigan, and A. Leipertz. 2011. Study of the influence of electric fields on flames using planar lif and piv techniques. Proc. Combust. Inst. 33:3195–201. doi:10.1016/j.proci.2010.05.112.
  • Ata, A., J. S. Cowart, A. Vranos, and B. M. Cetegen. 2005. Effects of direct current electric field on the blowoff characteristics of bluff-body stabilized conical premixed flames. Combust. Sci. Technol. 177:1291–304. doi:10.1080/00102200590950476.
  • Ayache, A., and M. Birouk. 2018. Experimental study of turbulent burning velocity of premixed biogas flame. J. Energy Res. Technol. 141:032202. doi:10.1115/1.4041095.
  • Belhi, M., B. J. Lee, M. S. Cha, and H. G. Im. 2019. Three-dimensional simulation of ionic wind in a laminar premixed bunsen flame subjected to a transverse dc electric field. Combust. Flame 202:90–106. doi:10.1016/j.combustflame.2019.01.005.
  • Gillon, P., V. Gilard, M. Idir, and B. Sarh. 2019. Electric field influence on the stability and the soot particles emission of a laminar diffusion flame. Combust. Sci. Technol. 191:325–38. doi:10.1080/00102202.2018.1467404.
  • Greco, A., D. Mira, and X. Jiang. 2017. Effects of fuel composition on biogas combustion in premixed laminar flames. Energy Procedia 105:1058–62. doi:10.1016/j.egypro.2017.03.457.
  • Kim, G. T., D. G. Park, M. S. Cha, J. Park, and S. H. Chung. 2017. Flow instability in laminar jet flames driven by alternating current electric fields. Proc. Combust. Inst. 36:4175–82. doi:10.1016/j.proci.2016.09.015.
  • Kim, M. K., S. H. Chung, and H. H. Kim. 2011. Effect of ac electric fields on the stabilization of premixed bunsen flames. Proc. Combust. Inst. 33:1137–44. doi:10.1016/j.proci.2010.06.062.
  • Kim, M. K., S. H. Chung, and H. H. Kim. 2012. Effect of electric fields on the stabilization of premixed laminar bunsen flames at low ac frequency: Bi-ionic wind effect. Combust. Flame 159:1151–59. doi:10.1016/j.combustflame.2011.10.018.
  • Kobayashi, H., H. Hagiwara, H. Kaneko, and Y. Ogami. 2007. Effects of co2 dilution on turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 31:1451–58. doi:10.1016/j.proci.2006.07.159.
  • Kuhl, J., G. Jovicic, L. Zigan, and A. Leipertz. 2013. Transient electric field response of laminar premixed flames. Proc. Combust. Inst. 34:3303–10. doi:10.1016/j.proci.2012.07.016.
  • Kuhl, J., G. Jovicic, L. Zigan, S. Will, and A. Leipertz. 2015. Influence of electric fields on premixed laminar flames: Visualization of perturbations and potential for suppression of thermoacoustic oscillations. Proc. Combust. Inst. 35:3521–28. doi:10.1016/j.proci.2014.08.026.
  • Kuhl, J., T. Seeger, L. Zigan, S. Will, and A. Leipertz. 2017. On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields. Combust. Flame 176:391–99. doi:10.1016/j.combustflame.2016.10.026.
  • Lawton, J., and F. J. Weinberg. 1964. Maximum ion currents from flames and the maximum practical effects of applied electric fields. Proc. R. Soc. London 277:468–97.
  • Macheret, S. O., M. N. Shneider, and R. B. Miles. 2004. Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas. AIAA J. 42:1378–87. doi:10.2514/1.3971.
  • Nie, Y., J. Wang, W. Zhang, M. Chang, M. Zhang, and Z. Huang. 2019. Flame brush thickness of lean turbulent premixed bunsen flame and the memory effect on its development. Fuel 242:607–16. doi:10.1016/j.fuel.2019.01.088.
  • Nikpey Somehsaraei, H., M. Mansouri Majoumerd, P. Breuhaus, and M. Assadi. 2014. Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Appl. Therm. Eng. 66:181–90. doi:10.1016/j.applthermaleng.2014.02.010.
  • Park, D. G., S. H. Chung, and M. S. Cha. 2016. Bidirectional ionic wind in nonpremixed counterflow flames with dc electric fields. Combust. Flame 168:138–46. doi:10.1016/j.combustflame.2016.03.025.
  • Park, D. G., S. H. Chung, and M. S. Cha. 2017. Visualization of ionic wind in laminar jet flames. Combust. Flame 184:246–48. doi:10.1016/j.combustflame.2017.06.011.
  • Pedersen, T., and R. C. Brown. 1993. Simulation of electric field effects in premixed methane flames. Combust. Flame 94:433–48. doi:10.1016/0010-2180(93)90125-M.
  • Peters, N. 2000. Turbulent combustion. Cambridge University Press.
  • Prager, J., U. Riedel, and J. Warnatz. 2007. Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames. Proc. Combust. Inst. 31:1129–37. doi:10.1016/j.proci.2006.07.141.
  • Ren, Y., W. Cui, and S. Li. 2018. Electrohydrodynamic instability of premixed flames under manipulations of dc electric fields. Phys Rev E 97:013103. doi:10.1103/PhysRevE.97.013103.
  • Salvador, P. R., and K. G. Xu. 2017. Electric field modified bunsen flame with variable anode placement. J. Thermophys. Heat Transfer 31:956–64. doi:10.2514/1.T5069.
  • Shepherd, I. G., and R. K. Cheng. 2001. The burning rate of premixed flames in moderate and intense turbulence. Combust. Flame 127:2066–75. doi:10.1016/S0010-2180(01)00309-1.
  • Tran, M.-V., and M. S. Cha. 2016. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under dc electric fields. Combust. Flame 173:114–22. doi:10.1016/j.combustflame.2016.08.012.
  • Tran, M.-V., and M. S. Cha. 2017. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under ac electric fields. Proc. Combust. Inst. 36:1421–30. doi:10.1016/j.proci.2016.05.008.
  • Wang, J., Q. Yu, W. Zhang, M. Zhang, and Z. Huang. 2019. Development of a turbulence scale controllable burner and turbulent flame structure analysis. Exp. Therm Fluid Sci. 109: doi: 10.1016/j.expthermflusci.2019.109898.
  • Xiong, Y., S. H. Chung, and M. S. Cha. 2017a. Instability and electrical response of small laminar coflow diffusion flames under ac electric fields: Toroidal vortex formation and oscillating and spinning flames. Proc. Combust. Inst. 36:1621–28. doi:10.1016/j.proci.2016.06.022.
  • Xiong, Y., S. H. Chung, and M. S. Cha. 2017b. A parametric study of ac electric field-induced toroidal vortex formation in laminar nonpremixed coflow flames. Combust. Flame 182:142–49. doi:10.1016/j.combustflame.2017.04.013.
  • Yoon, S. H., B. Seo, J. Park, S. H. Chung, and M. S. Cha. 2019. Edge flame propagation via parallel electric fields in nonpremixed coflow jets. Proc. Combust. Inst. 37:5537–44. doi:10.1016/j.proci.2018.06.026.
  • Zhang, M., J. Wang, J. Wu, Z. Wei, Z. Huang, and H. Kobayashi. 2014. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures. Int. J. Hydrogen Energy 39:5176–85. doi:10.1016/j.ijhydene.2014.01.038.
  • Zhen, H. S., C. W. Leung, and C. S. Cheung. 2013. Effects of hydrogen addition on the characteristics of a biogas diffusion flame. Int. J. Hydrogen Energy 38:6874–81. doi:10.1016/j.ijhydene.2013.02.046.
  • Zhen, H. S., C. W. Leung, C. S. Cheung, and Z. H. Huang. 2014. Characterization of biogas-hydrogen premixed flames using bunsen burner. Int. J. Hydrogen Energy 39:13292–99. doi:10.1016/j.ijhydene.2014.06.126.
  • Zhen, H. S., C. W. Leung, C. S. Cheung, and Z. H. Huang. 2016. Combustion characteristic and heating performance of stoichiometric biogas–hydrogen–air flame. Int. J. Heat Mass Transf. 92:807–14. doi:10.1016/j.ijheatmasstransfer.2015.09.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.