367
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation of n-Heptane Spray Combustion in a Porous Medium Burner

ORCID Icon, ORCID Icon, , &
Pages 313-334 | Received 07 May 2021, Accepted 29 Jun 2021, Published online: 07 Jul 2021

References

  • Asgari, B., and E. Amani. 2021. An improved spray-wall interaction model for Eulerian-Lagrangian simulation of liquid sprays. Int. J. Multiphase Flow 134:103487. doi:10.4271/2017-01-0788.
  • Banerjee, A., and D. Paul. 2021. Developments and applications of porous medium combustion: A recent review. Energy 221:119868. doi:10.1016/j.energy.2021.119868.
  • Catapano, F., M. Costa, G. Marseglia, P. Sementa, U. Sorge, and B. M. Vaglieco. 2016. An experimental and numerical investigation of gdi spray impact over walls at different temperatures. SAE Technical Paper 1:0853. doi:10.4271/2016-01-0853.
  • Chen, L., Y. F. Xia, B. W. Li, and J. R. Shi. 2018. Flame front inclination instability in the porous media combustion with inhomogeneous preheating temperature distribution. Appl. Therm. Eng 128:1520. doi:10.1016/j.applthermaleng.2017.09.085.
  • Chen, R.-H., S.-L. Chiu, and T.-H. Lin. 2007. On the collision behaviors of a diesel drop impinging on a hot surface. Exp. Therm Fluid Sci 32 (2):587. doi:10.1016/j.expthermflusci.2007.07.002.
  • Chen, X., J. Li, D. Zhao, M. T. Rashid, X. Zhou, and N. Wang. 2021. Effects of porous media on partially premixed combustion and heat transfer in meso-scale burners fuelled with ethanol. Energy 224:120191. doi:10.1016/j.energy.2021.120191.
  • Das, S., B. K. Debnath, R. S. Das, A. Stagni, and T. Faravelli. 2019. Numerical investigation of a porous media combustor in a small-scale diesel engine. Energy 186:115785. doi:10.1016/j.energy.2019.07.115.
  • Echeverri-Uribe, C., and A. A. Amell. 2019. Experimental evaluation of the surface-stabilized combustion of a confined porous inert media burner. Combust. Sci. Technol 192 (2):335. doi:10.1080/00102202.2019.1565493.
  • Gosman, A., and E. Ioannides. 1981. Aspects of computer simulation of liquid-fuelled combustors. AIAA 19th AEROSPACE SCIENCES MEETING 81:0323. doi:10.2514/6.1981-323.
  • Haack, D. P., 1993. Mathematical analysis of radiatively enhanced liquid droplet vaporization and liquid fuel combustion within a porous inert medium. M.S. Thesis. M.Sc. Thesis, University of Texas at Austin, Austin.
  • Kaplan, M., and M. J. Hall. 1995. The combustion of liquid fuels within a porous-media radiant burner. exp. Therm Fluid Sci 11 (1):13. doi:10.1016/S0894-1777(94)00106-1.
  • Li, H., J. Shi, M. Mao, and Y. Liu. 2019. Experimental and numerical studies on combustion characteristics of N2-diluted CH4 and O2 diffusion combustion in a packed bed. R Soc Open Sci 6 (9):190492. doi:10.1098/rsos.190492.
  • Liu, A. B., D. Mather, and R. D. Reitz. 1993. Modeling the effects of drop drag and breakup on fuel sprays. Energy Convers. Resour., ASME Int. Mech. Eng. Congr. Expo 1:0148. doi:10.4271/930072.
  • Liu, H., D. Wu, M. Xie, H. Liu, and Z. Xu. 2019a. Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium. Appl. Therm. Eng 150:445. doi:10.1016/j.applthermaleng.2018.12.155.
  • Liu, H., D. Wu, M. Xie, S. Wang, and L. Liu. 2019c. Experimental study on the pre-evaporation pulse combustion of liquid fuel within a porous medium burner. Exp. Therm Fluid Sci 103:286. doi:10.1016/j.expthermflusci.2019.01.023.
  • Liu, L., H. Liu, M. Xie, and X. Liu. 2019b. Experimental characterization of diesel combustion in an electrically preheated porous media burner. Energy & Fuels 33 (12):12749. doi:10.1021/acs.energyfuels.9b02812.
  • Liu, X., H. Wang, X. Wang, Z. Zheng, and M. Yao. 2017. Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion. Appl. Energy 189:187. doi:10.1016/j.apenergy.2016.12.054.
  • Liu, Y., A. W. Fan, H. Yao, and W. Liu. 2015. Numerical investigation of filtration gas combustion in a mesoscale combustor filled with inert fibrous porous medium. Int. J. Heat Mass Transfer 91:18. doi:10.1016/j.ijheatmasstransfer.2015.07.100.
  • Liu, Y., D. G. Ning, A. W. Fan, and H. Yao. 2016. Experimental and numerical investigations on flame stability of methane/air mixtures in mesoscale combustors filled with fibrous porous media. Energy Convers. Manage 123:402. doi:10.1016/j.enconman.2016.06.058.
  • Magnussen, B. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. 19th Aerospace Sciences Meeting 47. doi:10.2514/6.1981-42.
  • Moiz, A. A., S. Som, L. Bravo, and S.-Y. Lee. 2015. Experimental and numerical studies on combustion model selection for split injection spray combustion. SAE Technical Paper 1:0374. doi:10.4271/2015-01-0374.
  • Mujeebu, M. A., M. Z. Abdullah, A. A. Mohamad, and M. Z. Abu Bakar. 2010. Trends in modeling of porous media combustion. Prog. Energy Combust. Sci 36 (6):627. doi:10.1016/j.pecs.2010.02.002.
  • Mundo, C., M. Sommerfeld, and C. Tropea. 1995. Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiphase Flow 21 (2):151. doi:10.1016/0301-9322(94)00069-V.
  • Naber, J. D., and R. D. Reitz. 1988. Modeling engine spray/wall impingement. SAE International 97:118. doi:10.4271/880107.
  • Ni, S. L., D. Zhao, S. Becker, and A. K. Tang. 2020. Thermodynamics and entropy generation studies of a T-shaped microcombustor: Effects of porous medium and ring-shaped ribs. Appl. Therm. Eng 175:115374. doi:10.1016/j.applthermaleng.2020.115374.
  • Ni, S. L., D. Zhao, T. Cai, and F. Cao. 2021. Energy conversion efficiency improvement studies on unconventional premixed micro-combustors partially inserted with porous medium. Fuel Process. Technol 215:106774. doi:10.1016/j.fuproc.2021.106774.
  • Ning, D., Y. Liu, Y. Xiang, and A. W. Fan. 2017. Experimental investigation on non-premixed methane/air combustion in Y-shaped meso-scale combustors with/without fibrous porous media. Energy Convers. Manage 138:22. doi:10.1016/j.enconman.2017.01.065.
  • O’rourke, P. J., and A. A. Amsden. 2000. A spray/wall interaction submodel for the KIVA-3 wall film model. SAE International 1:271. doi:10.4271//2000-01-0271.
  • Periasamy, C., A. Saboonchi, and S. R. Gollahalli, 2007. Numerical prediction of evaporation processes in porous media combustors. Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Las Vegas, Nevada, USA, 2, 643. Doi: 10.1115/DETC2007-34672.
  • Periasamy, C., S. K. Sankara Chinthamony, and S. R. Gollahalli, 2004. Modeling liquid spray evaporation in heated porous media with a local thermal non-equilibrium modeled. Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, California, USA, 123. Doi. 10.1115/IMECE2004-61300
  • Sazhin, S. S. 2006. Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci 32:162. doi:10.1016/j.pecs.2005.11.001.
  • Shi, J., H. Xiao, J. Li, N. Li, Y. Xia, and Y. Xu. 2017. Two-dimensional pore-level simulation of low-velocity filtration combustion in a packed bed with staggered arrangements of discrete cylinders. Combust. Sci. Technol 189 (7):1260. doi:10.1080/00102202.2017.1282472.
  • Stanton, D. W. 1996. Modeling fuel film formation and wall interaction in diesel engines. SAE Trans 105:808. doi:10.4271/960628.
  • Tseng, C. J., and J. R. Howell. 1996. Combustion of liquid fuels in a porous radiant burner. Combust. Sci. Technol 112:141. doi:10.1080/00102209608951953.
  • Yarin, A. L., and D. A. Weiss. 1995. Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech 283:141. doi:10.1017/S0022112095002266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.