226
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Oxygen on Radical Reaction during Oxidation of Different-rank Coals

, ORCID Icon, &
Pages 335-350 | Received 15 May 2021, Accepted 29 Jun 2021, Published online: 07 Jul 2021

References

  • Barinov, A., O. B. Malcioglu, S. Fabris, T. Sun, L. Gregoratti, M. Dalmiglio, and M. Kiskinova. 2009. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functional theory calculations. J. Phys. Chem. C 113 (21):9009–13. doi:10.1021/jp902051d.
  • Cai, J. W., S. Q. Yang, W. C. Zheng, W. X. Song, and R. Gupta. 2021. Dissect the capacity of low-temperature oxidation of coal with different metamorphic degrees. Fuel 292:8. doi:10.1016/j.fuel.2021.120256
  • Chu, T. X., P. Li, and Y. X. Chen. 2019. Risk assessment of gas control and spontaneous combustion of coal under gas drainage of an upper tunnel. Int J Min Sci Techno 29 (3):491–98. doi:10.1016/j.ijmst.2018.05.002.
  • Dai, G. L. 2012. Relation between free radicals concentration and gas products in process of coal low temperature oxidation. Journal of China Coal Society 37:122–26.
  • Frankcombe, T. J., S. K. Bhatia, and S. C. Smith. 2002. Ab initio modelling of basal plane oxidation of graphenes and implications for modelling char combustion. Carbon 40 (13):2341–49. doi:10.1016/S0008-6223(02)00147-1.
  • Green, U., Z. Aizenshtat, S. Ruthstein, and H. Cohen. 2012. Stable radicals formation in coals undergoing weathering: Effect of coal rank. Phys Chem Chem Phys 14 (37):13046–52. doi:10.1039/c2cp41696d.
  • Grzybek, T., R. Pietrzak, and H. Wachowska. 2002. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content. Fuel Process Technol 77–78:1–7. doi:10.1016/S0378-3820(02)00058-9.
  • Hayes, C. J., and C. M. Hadad. 2009. Combustion pathways of the alkylated heteroaromatics: Bond dissociation enthalpies and alkyl group fragmentations†. J Phys Chem A 113 (45):12370–79. doi:10.1021/jp809356y.
  • Kong, B., Z. H. Li, E. Y. Wang, W. Lu, L. Chen, and G. S. Qi. 2018. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. Process Saf Environ 119:285–94. doi:10.1016/j.psep.2018.08.002.
  • Levi, G., O. Senneca, M. Causa, P. Salatino, P. Lacovig, and S. Lizzit. 2015. Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS. Carbon 90:181–96. doi:10.1016/j.carbon.2015.04.003.
  • Li, G., W.-H. Huangfu, F. You, Z.-Y. Song, W.-D. Wang, and Y.-S. Zhu. 2021. Low-temperature oxidation and self-heating accelerated spontaneous combustion properties of a Yima formation bituminous coal with various moisture contents. International Journal of Coal Preparation and Utilization 1–20. doi:10.1080/19392699.2021.1885382.
  • Li, J. L., W. Lu, B. Kong, Y. J. Z. Cao, G. S. Qi, and C. R. Qin. 2019. Mechanism of gas generation during low-temperature oxidation of coal and model compounds. Energ Fuel 33 (2):1527–39. doi:10.1021/acs.energyfuels.8b03571.
  • Liu, J. X., X. M. Jiang, J. Shen, and H. Zhang. 2014b. Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics. Adv Powder Technol 25 (3):916–25. doi:10.1016/j.apt.2014.01.021.
  • Liu, J. X., X. M. Jiang, J. Shen, and H. Zhang. 2015. Influences of particle size, ultraviolet irradiation and pyrolysis temperature on stable free radicals in coal. Powder Technol 272:64–74. doi:10.1016/j.powtec.2014.11.017.
  • Liu, J. X., X. M. Jiang, X. X. Han, J. Shen, and H. Zhang. 2014a. Chemical properties of superfine pulverized coals. Part 2. Demineralization effects on free radical characteristics. Fuel 115:685–96. doi:10.1016/j.fuel.2013.07.099.
  • Liu, M. X., J. L. Yang, Y. Yang, Z. Y. Liu, L. Shi, W. J. He, and Q. Y. Liu. 2016. The radical and bond cleavage behaviors of 14 coals during pyrolysis with 9,10-dihydrophenanthrene. Fuel 182:480–86. doi:10.1016/j.fuel.2016.06.006.
  • Nimaje, D. S., and D. P. Tripathy. 2016. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel 163:139–47. doi:10.1016/j.fuel.2015.09.041.
  • Perry, S. T., T. H. Fletcher, M. S. Solum, and R. J. Pugmire. 2000. Modeling nitrogen evolution during coal pyrolysis based on a global free-radical mechanism. Energy & Fuels 14 (5):1094–102. doi:10.1021/ef000061i.
  • Petrakis, L., D. W. Grandy, and G. L. Jones 1981. Fundamentals of coal depolymerization: An experimental and statistical correlative model of the effects of temperature and solvent on free radicals in coal. Quarterly report, October 1-December 31, 1980.
  • Petrakis, L., D. W. Grandy, and G. L. Jones. 1982. Free radicals in coal and coal conversions. 7. An in-depth experimental investigation and statistical correlative model of the effects of residence time, temperature and solvents. Fuel 61 (1):21–28. doi:10.1016/0016-2361(82)90288-5.
  • Pilawa, B., A. B. Wieckowski, R. Pietrzak, and H. Wachowska. 2002. Oxidation of demineralized coal and coal free of pyrite examined by EPR spectroscopy. Fuel 81 (15):1925–31. doi:10.1016/S0016-2361(02)00131-X.
  • Qi, X. Y., D. M. Wang, H. H. Xin, and G. S. Qi. 2014. An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures. Spectrosc Lett 47 (7):495–503. doi:10.1080/00387010.2013.817433.
  • Shang-Quan, M., and F. Jing. 2014. Research on the free radical affecting methane outburst within coal under the electromagnetic radiation. In Progress in Mine Safety Science and Engineering Ii, ed. Xueqiu He, Hani Mitri ,Baisheng Nie, Yunhai Wang, Ting X. Ren, Wenxue Chen, 483–86. Boca Raton,Florida: CRC Press(The Chemical Rubber Company Press).
  • Song, J. J., J. Deng, J. Y. Zhao, Y. N. Zhang, and C. M. Shu. 2021. Comparative analysis of exothermic behaviour of fresh and weathered coal during low-temperature oxidation. Fuel 289:119942. doi:10.1016/j.fuel.2020.119942
  • Tadyszak, K., M. A. Augustyniak-Jablokow, A. B. Wieckowski, L. Najder-Kozdrowska, R. Strzelczyk, and B. Andrzejewski. 2015. Origin of electron paramagnetic resonance signal in anthracite. Carbon 94:53–59. doi:10.1016/j.carbon.2015.06.057.
  • Tahmasebi, A., J. L. Yu, Y. N. Han, F. K. Yin, S. Bhattacharya, and D. Stokie. 2012. Study of chemical structure changes of Chinese lignite upon drying in superheated steam, microwave, and hot air. Energ Fuel 26 (6):3651–60. doi:10.1021/ef300559b.
  • Taub, T., A. Hassid, S. Ruthstein, and H. Cohen. 2020. Mechanism underlying the emission of gases during the low-temperature oxidation of bituminous and lignite coal piles: The involvement of radicals. Acs Omega 5 (44):28500–09. doi:10.1021/acsomega.0c02841.
  • Tsukada, N., N. Kinoshita, Y. Kabuki, Y. Taguchi, Y. Takashima, T. Tsumura, and M. Taniguchi. 2020. Role of OH Radical in Fuel-NOx Formation during Cocombustion of Ammonia with Hydrogen, Methane, Coal, and Biomass. Energ Fuel 34 (4):4777–87. doi:10.1021/acs.energyfuels.0c00356.
  • Wang, D. M., H. H. Xin, X. Y. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003a. Analysis of the mechanism of the low-temperature oxidation of coal. Combustion and Flame 134 (1–2):107–17. doi:10.1016/S0010-2180(03)00086-5.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003b. Pathways for production of CO2 and CO in low-temperature oxidation of coal. Energ Fuel 17 (1):150–58. doi:10.1021/ef020095l.
  • Wang, J., Y. L. Zhang, J. F. Wang, C. S. Zhou, Y. G. Wu, and Y. B. Tang. 2020. Study on the chemical inhibition mechanism of DBHA on free radical reaction during spontaneous combustion of coal. Energ Fuel 34 (5):6355–66. doi:10.1021/acs.energyfuels.0c00226.
  • Wu, D., G. J. Liu, R. Y. Sun, and X. Fan. 2013. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction. Energ Fuel 27 (10):5823–30. doi:10.1021/ef401276h.
  • Xu, Q., S. Q. Yang, J. W. Cai, B. Z. Zhou, and Y. A. Xin. 2018. Risk forecasting for spontaneous combustion of coals at different ranks due to free radicals and functional groups reaction. Process Saf Environ 118:195–202. doi:10.1016/j.psep.2018.06.040.
  • Yan, Y., L. Shi, Q. Liu, X. Shi, T. Wang, Q. Zhou, Z. Liu, W. Han, and M. Li. 2017. Coke and radicals formation on a sulfided NiMo/γ-Al 2 O 3 catalyst during hydroprocessing of an atmospheric residue in hydrogen donor media. Fuel Processing Technology 159:404–11. doi:10.1016/j.fuproc.2017.02.005.
  • Zhang, Y. L., J. F. Wang, J. M. Wu, S. Xue, Z. F. Li, and L. P. Chang. 2015. Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal. Int J Coal Geol 140:1–8. doi:10.1016/j.coal.2015.01.001.
  • Zhao, J. Q., D. G. Yang, J. X. Wu, X. L. Meng, X. Li, G. G. Wu, Z. Y. Miao, R. Z. Chu, and S. Yu. 2021. Prediction of temperature and CO concentration fields based on BPNN in low-temperature coal oxidation. Thermochim Acta 695:178820. doi:10.1016/j.tca.2020.178820.
  • Zhao, X. S., Z. Y. Liu, and Q. Y. Liu. 2017. The bond cleavage and radical coupling during pyrolysis of Huadian oil shale. Fuel 199:169–75. doi:10.1016/j.fuel.2017.02.095.
  • Zhong, Y., S. Q. Yang, X. C. Hu, J. W. Cai, Z. Q. Tang, and Q. Xu. 2018. Whole process inhibition of a composite superabsorbent polymer-based antioxidant on coal spontaneous combustion. Arabian Journal for Science and Engineering 43 (11):5999–6009. doi:10.1007/s13369-018-3167-5.
  • Zhou, B., Q. Y. Liu, L. Shi, and Z. Y. Liu. 2019. Electron spin resonance studies of coals and coal conversion processes: A review. Fuel Process Technology 188:212–27. doi:10.1016/j.fuproc.2019.01.011.
  • Zhou, Q. Q., Q. Y. Liu, L. Shi, Y. X. Yan, and Z. Y. Liu. 2017. Behaviors of coking and radicals during reaction of volatiles generated from fixed-bed pyrolysis of a lignite and a subbituminous coal. Fuel Processing Technology 161:304–10. doi:10.1016/j.fuproc.2017.01.040.
  • Zhou, Y., L. Li, L. J. Jin, J. L. Zhu, J. G. Li, Y. Li, H. J. Fan, and H. Q. Hu. 2020. Effect of functional groups on volatile evolution in coal pyrolysis process with in-situ pyrolysis photoionization time-of-flight mass spectrometry. Fuel 260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.