215
Views
1
CrossRef citations to date
0
Altmetric
Research Article

High Temporal–spatial Distribution of Soot Temperature and Volume Fraction in Single Coal Combustion Flame

, ORCID Icon, &
Pages 3246-3258 | Received 13 Mar 2021, Accepted 07 Jul 2021, Published online: 21 Jul 2021

References

  • Beatrice, C., C. BERTOLI, N. C. CIRILLO, N. D. GIACOMO, S. DI STASIO. 1995. Two-colour pyrometry measurements of soot loading in a diesel engine burning model fuels of varying quality. Combust. Sci. Technol. 110-111(1):321–39. doi:10.1080/00102209508951929.
  • Bejarano, P. A., and Y. A. Levendis. 2008. Single-coal-particle combustion in O2/N2 and O2/CO2 environments. Combust. Flame. 153 (1–2):270–87. doi:10.1016/j.combustflame.2007.10.022.
  • Bu, C., D. Pallarès, X. Chen, A. Gómez-Barea, D. Liu, B. Leckner, P. Lu. 2016. Oxy-fuel combustion of a single fuel particle in a fluidized bed: Char combustion characteristics, an experimental study. Chem. Eng. J. 287:649–56. doi:10.1016/j.cej.2015.11.078.
  • Cheng, Q., X. Zhang, Z. Wang, H. Zhou, S. Shao. 2014. Simultaneous measurement of three-dimensional temperature distributions and radiative properties based on radiation image processing technology in a gas-fired pilot tubular furnace. Heat. Transfer. Eng. 35(6–8):770–79. doi:10.1080/08832323.2013.838096.
  • Choi, S., S. EUN HONG, J. Sung Kim, J. JIN KIM. 1991. Observation of single coal particle flames. Combust. Sci. Technol. 78(1–3):117–26. doi:10.1080/00102209108951743.
  • Corwin, R. R., and A. Rodenburghii. 1994. Temperature error in radiation thermometry caused by emissivity and reflectance measurement error. Appl. Opt. 33 (10):1950–57. doi:10.1364/AO.33.001950.
  • Dahl, D., M. Andersson, and I. Denbratt. 2011. The origin of pressure waves in high load HCCI combustion: A high-speed video analysis. Combust. Sci. Technol. 183 (11):1266–81. doi:10.1080/00102202.2011.589875.
  • Fu, T., X. Cheng, and Z. Yang. 2008. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics. Appl. Opt. 47 (32):6112–23. doi:10.1364/AO.47.006112.
  • Glassman, I. 1989. Soot formation in combustion processes. Symp. (Int.) Combust. 22 (1):295–311. doi:10.1016/S0082-0784(89)80036-0.
  • Grosshandler, W. L. 1982. The effect of soot on pyrometric measurements of coal particle temperature. Combust. Flame. 55 (1):59–71. doi:10.1016/0010-2180(84)90149-4.
  • Jorgensen, F. R. A., and M. Zuiderwyk. 1985. Two-colour pyrometer measurement of the temperature of individual combusting particles. J. Phys. E: Sci. Instrum. 18 (6):486. doi:10.1088/0022-3735/18/6/006.
  • Khatami, R., and Y. A. Levendis. 2011. On the deduction of single coal particle combustion temperature from three-color optical pyrometry. Combust. Flame. 158 (9):1822–36. doi:10.1016/j.combustflame.2011.01.007.
  • Khatami, R., and Y. A. Levendis. 2013. Soot volume fractions in volatile matter envelope flames of bituminous coal particles in air and oxy-fuel combustion. ASME Power Conference, Boston, Massachusetts, USA, V001T001A023.
  • Khatami, R., Y. A. Levendis, and M. A. Delichatsios. 2015. Soot loading, temperature and size of single coal particle envelope flames in conventional- and oxy-combustion conditions (O2/N2 and O2/CO2). Combust. Flame. 162 (6):2508–17. doi:10.1016/j.combustflame.2015.02.020.
  • Lafolletie, R. M., P. O. Hedman, and P. J. Smith. 1989. An analysis of coal particle temperature measurements with two-color optical pyrometers. Combust. Sci. Technol. 66 (1–3):93–105. doi:10.1080/00102208908947141.
  • Levendis, Y. A., K. Joshi, R. Khatami, A. F. Sarofim. 2011. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combust. Flame. 158(3):452–65. doi:10.1016/j.combustflame.2010.09.007.
  • Levendis, Y. A., K. R. Estrada, and H. C. Hottel. 1992. Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles. Rev. Sci. Instrum. 63 (7):3608–22. doi:10.1063/1.1143586.
  • Lukovic, M., M. Vicic, Z. Popovic, L. Zekovic, B. Kasalica, I. Belca. 2018. Two-color pyrometer-based method for measuring temperature profiles and attenuation coefficients in a coal power plant. Combust. Sci. Technol. 190(11):2018–29. doi:10.1080/00102202.2018.1481401.
  • Ma, J., T. H. Fletcher, and B. W. Webb. 1995. Thermophoretic Sampling of Coal-Derived Soot Particles during Devolatilization. Energy & Fuels 9 (5):802–08. doi:10.1021/ef00053a011.
  • Ma, J., T. H. Fletcher, and B. W. Webb. 1996. Conversion of coal tar to soot during coal pyrolysis in a post-flame environment. Symp. (Int.) Combust. 26 (2):3161–67. doi:10.1016/S0082-0784(96)80161-5.
  • McLintock, I. S. 1968. The effect of various diluents on soot production in laminar ethylene diffusion flames. Combust. Flame. 12 (3):217–25. doi:10.1016/0010-2180(68)90018-7.
  • Modest, M. F. 2013. Radiative heat transfer. New York: Academic press.
  • Molina, A., and C. R. Shaddix. 2007. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc. Combust. Inst. 31 (2):1905–12. doi:10.1016/j.proci.2006.08.102.
  • Murase, E., K. Hanada, T. Miyaura, J. Ikeda. 2005. Photographic observation and emission spectral analysis of homogeneous charge compression ignition combustion. Combust. Sci. Technol. 177(9):1699–723. doi:10.1080/00102200590959242.
  • Ohtake, K., and K. Okazaki. 1988. Optical ct measurement and mathematical prediction of multi-temperature in pulverized coal combustion field. Int. J. Heat Mass Transfer. 31 (2):397–405. doi:10.1016/0017-9310(88)90022-1.
  • Riaza, J., J. Gibbins, and H. Chalmers. 2017. Ignition and combustion of single particles of coal and biomass. Fuel 202:650–55. doi:10.1016/j.fuel.2017.04.011.
  • Riaza, J., R. Khatami, Y. A. Levendis, L. Álvarez, M. V. Gil, C. Pevida, F. Rubiera, J. J. Pis. 2014. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust. Flame. 161(4):1096–108. doi:10.1016/j.combustflame.2013.10.004.
  • Si, M., Q. Cheng, Q. Zhang, and D. Wang. 2019a. Simultaneous reconstruction of the temperature and inhomogeneous radiative properties of soot in atmospheric and pressurized ethylene/air flames. Combust. Sci. Technol. 2:1–17. doi:10.1080/00102202.2019.1632299.
  • Si, M., Q. Cheng, Q. Zhang, D. Wang, Z. Luo, C. Lou. 2019b. Study of temperature, apparent spectral emissivity, and soot loading of a single burning coal particle using hyper-spectral imaging technique. Combust. Flame. 209:267–77. doi:10.1016/j.combustflame.2019.08.003.
  • Smyth, K. C., and C. R. Shaddix. 1996. The elusive history of m ≌ 1.57-0.56i for the refractive index of soot. Combust. Flame 107 (3):314–20. doi:10.1016/S0010-2180(96)00170-8.
  • Snelling, D. R., K. A. Thomson, G. J. Smallwood, O. L. Guider, E. J. Weckman, R. A. Fraser. 2002. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J. 40(9):1789–95. doi:10.2514/2.1855.
  • Spjut, R. E., A. F. Sarofim, and J. P. Longwell. 1985. Laser heating and particle temperature measurement in an electrodynamic balance. Langmuir 1 (3):355–60. doi:10.1021/la00063a016.
  • Timothy, L. D., D. Froelich, A. F. Sarofim, J. M. Béer. 1988. Soot formation and burnout during the combustion of dispersed pulverized coal particles. Symp. (Int.) Combust. 21(1):1141–48. doi:10.1016/S0082-0784(88)80345-X.
  • Van Eyk, P. J., P. J. Ashman, Z. T. Alwahabi, G. J. Nathan. 2008. Quantitative measurement of atomic sodium in the plume of a single burning coal particle. Combust. Flame. 155(3):529–37. doi:10.1016/j.combustflame.2008.05.012.
  • Van Eyk, P. J., P. J. Ashman, Z. T. Alwahabi, G. J. Nathan. 2009. Simultaneous measurements of the release of atomic sodium, particle diameter and particle temperature for a single burning coal particle. Proc. Combust. Inst. 32(2):2099–106. doi:10.1016/j.proci.2008.07.038.
  • Van Eyk, P. J., P. J. Ashman, Z. T. Alwahabi, G. J. Nathan. 2011. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame. Combust. Flame. 158(6):1181–92. doi:10.1016/j.combustflame.2010.10.024.
  • Wornat, M. J., A. F. Sarofim, and J. P. Longwell. 1989. Pyrolysis-induced changes in the ring number composition of polycyclic aromatic compounds from a high volatile bituminous coal. Symp. (Int.) Combust. 22 (1):135–43. doi:10.1016/S0082-0784(89)80019-0.
  • Zhou, H., C. Lou, Q. Cheng, Z. Jiang, J. He, B. Huang, Z. Pei, C. Lu. 2005. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proc. Combust. Inst. 30(1):1699–706. doi:10.1016/j.proci.2004.08.090.
  • Zhou, H.-C., S.-D. Han, C. Lou, H. Liu. 2002. A new model of radiative image formation used in visualization of 3-D temperature distributions in large-scale furnaces. Numer. Heat Transfer, Part B: Fundamentals. 42(3):243–58. doi:10.1080/10407790260233556.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.