316
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Coupling the Multiple Mapping Conditioning Mixing Model with Reaction-diffusion Databases in LES of Methane/air Flames

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 351-378 | Received 04 May 2021, Accepted 08 Jul 2021, Published online: 20 Jul 2021

References

  • Barlow, R., and J. Frank. 1998. Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27:1087–95.
  • Barlow, R., and J. Frank. Piloted CH4/Air Flames C,D,E, and F - Release 2.1. Report, Sandia National Laboratories, June 2007.
  • Bradley, D., L. Kwa, A. Lau, M. Missaghi, and S. Chin. 1988. Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust. Flame 71:109–22.
  • Breda, P., C. Yu, U. Maas, and M. Pfitzner. 2020. Validation of an Eulerian stochastic fields solver coupled with reaction-diffusion manifolds on LES of methane/air non-premixed flames. Flow Turbul. Combust (Nov). doi:10.1007/s10494-020-00235-w.
  • Breda, P., M. Hansinger, and M. Pfitzner. 2021. Chemistry computation without a subgrid PDF model in LES of turbulent non-premixed flames showing moderate local extinction. Proc. Combust. Inst. 38:2655–63.
  • Bykov, V., and U. Maas. 2007. The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11:839–62.
  • Cleary, M., and A. Klimenko. 2009. A generalised multiple mapping conditioning approach for turbulent combustion. Flow Turbul. Combust. 4:477–91.
  • Cleary, M., and A. Klimenko. 2011. A detailed quantitative analysis of sparse- Lagrangian filtered density function simulations in constant and variable density reacting jet flows. Phys. Fluids 23:115102.
  • Cleary, M., A. Klimenko, J. Janicka, and M. Pfitzner. 2009. A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames. Flow Turbul. Combust. 32:1499–507.
  • Colucci, P., F. Jaberi, P. Givi, and S. Pope. 1998. Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10:499.
  • Contino, F., H. Jeanmart, T. Lucchini, and G. D’Errico. 2011. Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: An effective method for solving combustion in engine simulations. Proc. Combust. Inst. 33:3057–64.
  • Ferraro, F., Y. Ge, M. Pfitzner, and M. Cleary. 2021. A fully consistent hybrid les/rans conditional transported Pdf method for non-premixed reacting flows. Combust. Sci. Technol. 193:379–418.
  • Galindo-Lopez, S., F. Salehi, M. Cleary, A. Masri, G. Neuber, O. Stein, A. Kronenburg, A. Varna, E. Hawkes, B. Sundaram, et al. 2018. A stochastic multiple mapping conditioning computational model in OpenFOAM for turbulent combustion. Comput. Fluids 172:410–25.
  • Ganter, S., C. Strassacker, G. Kuenne, T. Meier, A. Heinrich, U. Maas, and J. Janicka. 2018. Laminar near-wall combustion: Analysis of tabulated chemistry simulations by means of detailed kinetics. Int. J. Heat Fluid Flow 70:259–70.
  • Gao, F., and E. O’Brien. 1993. A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids 5:1282–84.
  • Gardiner, C. 2009. Stochastic methods. 4 ed. Berlin, Springer.
  • Ge, Y., M. Cleary, and A. Klimenko. 2011. Sparse-Lagrangian FDF simulations of Sandia Flame E with density coupling. Proc. Combust. Inst. 33:1401–09.
  • Ge, Y., M. Cleary, and A. Klimenko. 2013. A comparative study of Sandia flame series (D-F) using sparse-Lagrangian MMC modelling. Proc. Combust. Inst. 34:1325–32.
  • Gicquel, L., P. Givi, F. Jaberi, and S. Pope. 2002. Velocity filtered density function for large eddy simulations of turbulent flows. Phys. Fluids 1196:14.
  • Gicquel, O., N. Darabiha, and D. Thévenin. 2000. Laminar premixed hydrogen/air counter- flow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28:1901–08.
  • Gutheil, E., and H. Bockhorn. 1987. The effect of more dimensional PDFs on the turbulent reaction rate in turbulent reacting flows at moderate damköhler numbers. Phys. Chem.Hydrody. 9:525–35.
  • Hairer, E., S. Nørsett, and G. Warner. 1996. Solving ordinary differential equations II: stiff and differential-algebraic problems. 2 ed. Berlin: Springer-Verlag.
  • Hansinger, M., T. Zirwes, J. Zips, M. Pfitzner, F. Zhang, P. Habisreuther, and H. Bockhorn. 2020. The Eulerian stochastic fields method applied to large eddy simulations of a piloted flame with inhomogeneous inlet. Flow Turbul. Combust. 105:837–67.
  • Haworth, D. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36:168–259.
  • Heinrich, A., S. Ganter, G. Kuenne, C. Jainski, A. Dreizler, and J. Janicka. 2018. 3D numerical simulation of a laminar experimental SWQ burner with tabulated chemistry. Flow Turbul. Combust. 100:535–59.
  • Huo, Z., F. Salehi, S. Galindo-Lopez, M. Cleary, and A. Masri. 2019b. Sparse MMC-LES of a Sydney swirl flame. Proc. Combust. Inst. 37:2191–98.
  • Huo, Z., S. Galindo-Lopez, M. J. Cleary, and A. R. Masri On the validation of the TDAC method for a stochastic turbulent combustion model in OpenFOAM. In 12th Asia-Pacific Conference on Combustion, 2019a.
  • Ihme, M., and H. Pitsch. 2008. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model 2. Application in LES of Sandia flames D and E. Combust. Flame 155:90–107.
  • Issa, R., B. Ahmadi-Befrui, K. Beshay, and A. Gosman. 1991. Solution of the implicitly discretised reacting flow equations by operator-splitting. J. Comput. Phys. 93:388–410.
  • Jaberi, F., P. Colucci, S. James, P. Givi, and S. Pope. 1999. Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401:85–121.
  • Jaishree, J., and D. Haworth. 2012. Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions. Combust. Theory Model 16 (1):435–63.
  • Janicka, J., W. Kolbe, and W. Kollmann. 1979. Closure of the transport equation for the probability density function of turbulent scalar fields. J. Non-Equil. Thermody. 4:47–66.
  • Jones, W., and V. Prasad. 2010. Large eddy simulation of the Sandia flame series (D-F) using the Eulerian stochastic field method. Combust. Flame 157:1621–36.
  • Kemenov, K., H. Wang, and S. Pope. 2012. Modelling effects of subgrid-scale mixture fraction variance in LES of a piloted diffusion flame. Combust. Theory Model. 16:611–38.
  • Klimenko, A., and S. Pope. 2003. The modelling of turbulent reactive flows based on multiple mapping conditioning. Phys. Fluids 15:1907–25.
  • Lessani, B., and M. Papalexandris. 2006. Time-accurate calculation of variable density flows with strong temperature gradients and combustion. J. Comput. Phys. 212:218–46.
  • Lu, T., and C. Law. 2005. A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30:1333–41.
  • Maas, U., and S. Pope. 1992. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88:239–64.
  • Minuzzi, F., C. Yu, and U. Maas. 2019. Simulation of methane/air non-premixed turbulent flames based on REDIM simplified chemistry. Flow Turbul. Combust. 103:963–84.
  • Möbus, H., P. Gerlinger, and D. Brüggemann. 2001. Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames. Combust. Flame 124:519–34.
  • Muradoglu, M., S. Pope, and D. Caughey. 2001. The hybrid method for the PDF equations of turbulent reactive flows: Consistency conditions and correct algorithms. J. Comput. Phys. 172:841–78.
  • Mustata, R., L. Valiño, C. Jimenez, W. Jones, and S. Bondi. 2006. A probability density function Eulerian Monte Carlo field method for large eddy simulations: Applications to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame 145:88–104.
  • Neuber, G., F. Fuest, J. Kirchmann, A. Kronenburg, O. T. Stein, S. Galindo-Lopez, M. J. Cleary, R. S. Barlow, B. Coriton, J. H. Frank, et al. 2019. Sparse-Lagrangian MMC modelling of the sandia DME flame series. Combust. Flame 208:110–21.
  • Nicoud, F., and F. Ducros. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62:183–200.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10:319–39.
  • Pierce, C., and P. Monin. 2004. Progress-variable approach for large-eddy simulation of non- premixed turbulent combustion. J. Fluid Mech. 504:73–97.
  • Pope, S. 1981. A Monte Carlo method for the PDF equations of turbulent reactive flow. Combust. Sci. Tech. 25:159–74.
  • Pope, S. 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11:119–92.
  • Pope, S., 1990. Computations of turbulent combustion: Progress and challenges. 23rd Symp. Int. Combust. Proc. 23:591–612.
  • Pope, S. 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6:1.
  • Raman, V., and H. Pitsch. 2007. A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31:1711–19.
  • Sabel’nikov, V., and O. Soulard. 2005. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E 72:16301–163022.
  • Schneider, C., A. Dreizler, and J. Janika. 2003. Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135:185–90.
  • Sharma, E., S. De, and M. Cleary. 2021. LES of a lifted methanol spray flame series using the sparse-Lagrangian MMC. Proc. Combust. Inst. 38:3399–407.
  • Sheikhi, M., T. Drozda, P. Givi, and S. Pope. 2003. Velocity-scalar filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 15:2321.
  • Shoraka, Y., S. Galindo-Lopez, M. Cleary, A. Masri, F. Salehi, and A. Klimenko. 2021. Modelling of a turbulent premixed flame series using a new MMC-LES model with a shadow position reference variable. Proc. Combust. Inst. 38:3057–65.
  • Shrotriya, P., P. Wang, L. Jiang, and M. Murugesan. 2020 June. REDIM-PFDF sub-grid scale combustion modeling for turbulent partially-premixed flame: assessment of combustion modes. Combust. Sci. Tech 1782391. doi:10.1080/00102202.2020.
  • Smith, G., D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song, W. Gardiner, et al. GRI-Mech—An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion. Report GRI-95/0058, Nov 1995.
  • Sreenivasan, K. 1991. Fractals and multifractals in fluid turbulence. Annu Rev Fluid Mech 23:539–600.
  • Stone, C., and F. Bisetti, 2014. Comparison of ODE solver for chemical kinetics and reactive CFD applications. AIAA Paper 2014–822.
  • Strassacker, C., V. Bykov, and U. Maas. 2019. REDIM reduced modeling of flame quenching at a cold wall – the influence of detailed transport models and detailed mechanisms. Combust. Sci. Technol. 191:208–22.
  • Strassacker, C., V. Bykov, and U. Maas. 2021. Comparative analysis of reaction-diffusion manifold based reduced models for head-on- and side-wall-quenching flames. Proc. Combust. Inst. 38:1025–32.
  • Straub, C., A. Kronenburg, O. Stein, G. Kuenne, J. Janicka, R. Barlow, and D. Geyer. 2018. Multiple mapping conditioning coupled with an artificially thickened flame model for turbulent premixed combustion. Combust. Flame 196:325–36.
  • Straub, C., A. Kronenburg, O. Stein, R. Barlow, and D. Geyer. 2019. Modeling stratified flames with and without shear using multiple mapping conditioning. Proc. Combust. Inst. 37:2317–24.
  • Straub, C., A. Kronenburg, O. Stein, S. Galindo-Lopez, and M. Cleary. 2021. Mixing time scale models for multiple mapping conditioning with two reference variables. Flow Turbul. Combust. 106:1143–66.
  • Subramaniam, S., and S. B. Pope. 1998. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115:487.
  • Sundaram, B., and A. Klimenko. 2017. A PDF approach to thin premixed flamelets using multiple mapping conditioning. Proc. Combust. Inst. 36:1937–45.
  • Sutherland, W., 1893. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36:507–31.
  • Valiño, L. 1998. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60:157–72.
  • Valiño, L., R. Mustata, and K. Lataief. 2016. Consistent behavior of Eulerian Monte Carlo fields at low Reynolds numbers. Flow Turbul. Combust. 96:503–12.
  • van Oijen, J., F. Lammers, and L. De Goey. 2001. Modelling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127:2124–34.
  • Villermaux, J., and J. Devillon, 1972 Representation de la coalescence et de la redispersion des domains de segregation dans un fluide per modele d’interaction phenomenologique. Proc. of the Second International Symposia on Chemical Reaction Engineering, B1.
  • Vo, S., O. Stein, A. Kronenburg, and M. Cleary. 2017. Assessment of mixing time scales for a sparse particle method. Combust. Flame 179:280–99.
  • Vreman, A., B. Albrecht, J. van Oijen, L. De Goey, and R. Bastiaans. 2008. Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153:394–416.
  • Xu, J., and S. Pope. 2000. PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123:281–307.
  • Yu, C., P. Breda, F. Minuzzi, M. Pfitzner, and U. Maas. 2021a. A novel model for incorporation of differential diffusion effects in PDF simulations of non-premixed turbulent flames based on reaction-diffusion manifolds (REDIM). Phys. Fluids 33:025110.
  • Yu, C., P. Breda, M. Pfitzner, and U. Maas. 2021b. Coupling of mixing models with manifold based simplified chemistry in PDF modeling of turbulent reacting flows. Proc. Combust. Inst. 38:2645–53.
  • Yu, C., and U. Maas Numerical Study of turbulent reacting flows with local extinction and re-ignition effects based on a statistical method and REDIM reduced reaction kinetics. In 28. Deutscher Flammentag, 2017.
  • Yu, C., V. Bykov, and U. Maas. 2019. Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames. Proc. Combust. Inst. 37:2183–90.
  • Zhao, L., M. J. Cleary, O. T. Stein, and A. Kronenburg. 2019. A two-phase MMC-LES model for pyrolysing solid particles in a turbulent flame. Combust. Flame 209:322–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.