230
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Combustion Modes Induced by Oil-Droplet Gas-Phase Pre-ignition in the Chamber under Different Environmental Conditions

, , , , &
Pages 379-397 | Received 07 Apr 2021, Accepted 09 Jul 2021, Published online: 21 Jul 2021

References

  • Ambekar, A., A. K. Maurya, and A. Chowdhury. 2018. Droplet combustion studies of nitromethane and its blends. Exp. Therm. Fluid Sci. 93:431–40. doi:10.1016/j.expthermflusci.2018.01.026.
  • Andrews, A., R. Burns, R. Dougherty, D. Deckman, and M. Patel. 2016. Investigation of engine oil base stock effects on low speed pre-ignition in a turbocharged direct injection SI engine. SAE Int. J. Fuels Lubr. 9:400–07. doi:10.4271/2016-01-9071.
  • Bergeron, C. A., and W. L. H. Hallett. 1989. Ignition characteristics of liquid hydrocarbon fuels as single droplets. Can. J. Chem. Eng. 67:142–49. doi:10.1002/cjce.5450670120.
  • Costa, M., F. Catapano, P. Sementa, U. Sorge, and B. M. Vaglieco. 2016. Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: An experimental and numerical study on an optically accessible engine. Appl. Energy 180:86–103. doi:10.1016/j.apenergy.2016.07.089.
  • Di, H., X. He, P. Zhang, Z. Wang, M. S. Wooldridge, C. K. Law, C. Wang, S. Shuai, and J. Wang. 2014. Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane. Combust. Flame. 161:2531–38. doi:10.1016/j.combustflame.2014.04.014.
  • Fatouraie, M., M. Frommherz, M. Mosburger, E. Chapman, S. Li, R. Mccormick, and G. Fioroni. 2018. Investigation of the impact of fuel properties on particulate number emission of a modern gasoline direct injection engine. In WCX World Congress Experience. SAE International.
  • Fei, S., Z. Wang, Y. Qi, and Y. Wang. 2019a. Investigation on ignition of a single lubricating oil droplet in premixed combustible mixture at engine-relevant conditions. In WCX SAE World Congress Experience. SAE International.
  • Fei, S., Z. Wang, Y. Qi, Y. Wang, and H. Zhang. 2019b. Ignition of a single lubricating oil droplet in combustible ambient gaseous mixture under high-temperature and high-pressure conditions. Combust. Sci. Technol. 191:2033–52. doi:10.1080/00102202.2018.1542382.
  • Glushkov, D. O., and P. A. Strizhak. 2017. Ignition of composite liquid fuel droplets based on coal and oil processing waste by heated air flow. J. Clean. Prod. 165:1445–61. doi:10.1016/j.jclepro.2017.07.207.
  • Goldsborough, S. S. 2009. A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region. Combust Flame 156:1248–62. doi:10.1016/j.combustflame.2009.01.018.
  • Goldsborough, S. S., S. Hochgreb, G. Vanhove, M. S. Wooldridge, H. J. Curran, and C.-J. Sung. 2017. Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena. Prog. Energ. Combust. 63:1–78.
  • Han, K., B. Pang, X. Ma, H. Chen, G. Song, and Z. Ni. 2017. An experimental study of the burning characteristics of acetone–butanol–ethanol and diesel blend droplets. Energy 139:853–61. doi:10.1016/j.energy.2017.08.037.
  • Han, K., G. Song, X. Ma, and B. Yang. 2016. An experimental and theoretical study of the effect of suspended thermocouple on the single droplet evaporation. Appl. Therm. Eng. 101:568–75. doi:10.1016/j.applthermaleng.2015.12.022.
  • Hirano, S., M. Yamashita, K. Fujimoto, and K. Kato. 2013. Investigation of engine oil effect on abnormal combustion in turbocharged direct injection - spark ignition engines (Part 2). In SAE/KSAE 2013 International Powertrains, Fuels & Lubricants Meeting. SAE International.
  • Kassai, M., K. Torii, T. Shiraishi, T. Noda, T. K. Goh, K. Wilbrand, S. Wakefield, A. Healy, D. Doyle, R. Cracknell, et al. 2016. Research on the effect of lubricant oil and fuel properties on LSPI Occurrence in boosted S. I. engines. In SAE 2016 International Powertrains, Fuels & Lubricants Meeting. SAE International.
  • Kim, H., and S. W. Baek. 2016. Combustion of a single emulsion fuel droplet in a rapid compression machine. Energy 106:422–30. doi:10.1016/j.energy.2016.03.006.
  • Kim, H., S. W. Beak, and D. Chang. 2014. Auto-ignition characteristics of single n-Heptane droplet in a rapid compression machine. Combust. Sci. Technol. 186:912–27.
  • Kim, H., S. W. Beak, and S. H. Han. 2015. Ignition of a binary component fuel droplet in a rapid compression machine: Comparative analysis. Combust. Sci. Technol. 187:659–77. doi:10.1080/00102202.2014.960563.
  • Kuti, O. A., S. Y. Yang, N. Hourani, N. Naser, W. L. Roberts, S. H. Chung, and S. M. Sarathy. 2015. A fundamental investigation into the relationship between lubricant composition and fuel ignition quality. Fuel 160:605–13. doi:10.1016/j.fuel.2015.08.026.
  • Long, Y., Z. Wang, Y. Qi, S. Xiang, G. Zeng, P. Zhang, X. He, A. Gupta, H. Shao, and Y. Wang. 2016. Effect of oil and gasoline properties on pre-ignition and super-knock in a thermal research engine (TRE) and an optical rapid compression machine (RCM). In SAE 2016 World Congress and Exhibition. SAE International.
  • Mayer, M., P. Hofmann, B. Geringer, J. Williams, and J. Moss. 2016. Influence of different fuel properties and gasoline - ethanol blends on low-speed pre-ignition in turbocharged direct injection spark ignition engines. SAE Int. J. Engines 9:841–48. doi:10.4271/2016-01-0719.
  • Morikawa, K., Y. Moriyoshi, T. Kuboyama, T. Yamada, and M. Suzuki. 2015. Investigation of lubricating oil properties effect on low speed pre-ignition. In JSAE/SAE 2015 International Powertrains, Fuels & Lubricants Meeting. SAE International.
  • Moriyoshi, Y., T. Yamada, D. Tsunoda, M. Xie, T. Kuboyama, and K. Morikawa. 2015. Numerical simulation to understand the cause and sequence of LSPI phenomena and suggestion of CaO mechanism in highly boosted SI combustion in low speed range. In SAE 2015 World Congress & Exhibition. SAE International.
  • Ohtomo, M., H. Miyagawa, M. Koike, N. Yokoo, and K. Nakata. 2014. Pre-ignition of gasoline-air mixture triggered by a lubricant oil droplet. SAE Int. J. Fuels Lubr. 7:673–82. doi:10.4271/2014-01-2627.
  • Qi, Y., Y. Xu, Z. Wang, and J. Wang. 2014. The effect of oil intrusion on super knock in gasoline engine. In SAE 2014 World Congress & Exhibition. SAE International.
  • Saitoh, T., S. Ishiguro, and T. Niioka. 1982. An experimental study of droplet ignition characteristics near the ignitable limit. Combust. Flame 48:27–32. doi:10.1016/0010-2180(82)90113-4.
  • Shu, G., J. Pan, and H. Wei. 2013. Analysis of onset and severity of knock in SI engine based on in-cylinder pressure oscillations. Appl. Therm. Eng. 51:1297–306. doi:10.1016/j.applthermaleng.2012.11.039.
  • Takeuchi, K., K. Fujimoto, S. Hirano, and M. Yamashita. 2012. Investigation of engine oil effect on abnormal combustion in turbocharged direct injection - spark ignition engines. SAE Int. J. Fuels Lubr. 5:1017–24. doi:10.4271/2012-01-1615.
  • Tripathi, A., C. Zhang, and Z. Sun. 2018. A multizone model of the combustion chamber dynamics in a controlled trajectory rapid compression and expansion machine (CT-RCEM). Appl. Energy 231:179–93. doi:10.1016/j.apenergy.2018.09.107.
  • Wang, Y., Y. Li, Z. Wang, and X. He. 2017a. Hydrogen formation from methane rich combustion under high pressure and high temperature conditions. Int. J. Hydrogen Energy 42:14301–11. doi:10.1016/j.ijhydene.2017.04.022.
  • Wang, Z., H. Liu, and R. D. Reitz. 2017b. Knocking combustion in spark-ignition engines. Prog. Energ. Combust. 61:78–112.
  • Wang, Z., H. Liu, T. Song, Y. Qi, X. He, S. Shuai, and J. Wang. 2014. Relationship between super-knock and pre-ignition. Int. J. Engine Res. 16:166–80. doi:10.1177/1468087414530388.
  • Wang, Z., Y. Qi, H. Liu, Y. Long, and J.-X. Wang. 2015. Experimental study on pre-ignition and super-knock in gasoline engine combustion with carbon particle at elevated temperatures and pressures. In SAE 2015 World Congress & Exhibition. SAE International.
  • Welling, O., J. Moss, J. Williams, and N. Collings. 2014. Measuring the impact of engine oils and fuels on low-speed pre-ignition in downsized engines. SAE Int. J. Fuels Lubr. 7:1–8. doi:10.4271/2014-01-1219.
  • Wu, M. S., and S. I. Yang. 2016. Combustion characteristics of multi-component cedar bio-oil/kerosene droplet. Energy 113:788–95. doi:10.1016/j.energy.2016.07.097.
  • Yi, P., W. Long, L. Feng, L. Chen, J. Cui, and W. Gong. 2019. Investigation of evaporation and auto-ignition of isolated lubricating oil droplets in natural gas engine in-cylinder conditions. Fuel 235:1172–83. doi:10.1016/j.fuel.2018.08.084.
  • Yi, P., W. Long, L. Feng, W. Wang, and C. Liu. 2016. An experimental and numerical study of the evaporation and pyrolysis characteristics of lubricating oil droplets in the natural gas engine conditions. Int. J. Heat. Mass Transf. 103:646–60. doi:10.1016/j.ijheatmasstransfer.2016.07.084.
  • Zhang, P., W. Ji, T. He, X. He, Z. Wang, B. Yang, and C. K. Law. 2016. First-stage ignition delay in the negative temperature coefficient behavior: Experiment and simulation. Combust Flame 167:14–23. doi:10.1016/j.combustflame.2016.03.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.