197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Experimentation and Validation of Shrinking Particle - Gas Reaction in a Pilot Plant Downer Reactor

ORCID Icon, , , ORCID Icon, , , , , & show all
Pages 398-418 | Received 19 Dec 2020, Accepted 12 Jul 2021, Published online: 12 Aug 2021

References

  • ANSYS fluent theory guide (2016).
  • ANSYS Inc (2017) ANSYS® academic research, release 17.2, help system, ANSYS fluent customization manual
  • Bolkan, Y., F. Berruti, J. Zhu, B. Milne, et al. 2003. Modeling circulating fluidized bed downers. Powder Technology 132:85–100. doi:10.1016/S0032-5910(03)00059-7.
  • Chalermsinsuwan, B., T. Chanchuey, W. Buakhao, D. Gidaspow, P. Piumsomboon, et al. 2012. Computational fluid dynamics of circulating fluidised bed downer: Study of modeling parameters and system hydrodynamic characteristics. Chemical Engineering Journal 189–190:314–35. doi:10.1016/j.cej.2012.02.020.
  • Cheng, Y., F. Wei, Y. Guo, Y. Jin. 2001. CFD simulation of hydrodynamics in the entrance region of a downer. Chemical Engineering Science 56 (4):1687–96. doi:10.1016/S0009-2509(00)00397-3
  • Cheng, Y., C. Wu, J. Zhu, F. Wei, Y. Jin. 2008. Downer reactor: From fundamental study to industrial application. Powder Technology 183 (3):364–84. doi:10.1016/j.powtec.2008.01.022
  • Chuachuensuk, A., W. Paengjuntuek, and S. Kheawhom. 2010. A systematic model-based analysis of a downer regenerator in fluid catalytic cracking processes. Computers & Chemical Engineering 2013, 49, 136–145. doi:10.1016/j.compchemeng.2012.10.003
  • Deng, R., F. Wei, Y. Jin, Q. Zhang, Y. Jin. 2002a. Experimental study of the deep catalytic cracking process in a downer reactor. Industrial & Engineering Chemistry Research 41 (24):6015–19. doi:10.1021/ie010731n
  • Deng, R., F. Wei, T. Liu, Y. Jin. 2002b. Radial behavior in riser and downer during the FCC process. Chemical Engineering and Processing 41 (3):259–66. doi:10.1016/S0255-2701(01)00140-4
  • Ding, J., and D. Gidaspow. 1990. A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal 36 (4):523–38. doi:10.1002/aic.690360404.
  • Enwald, H., E. Peirano, and A. E. Almstedt. 1996. Eulerian two-phase flow theory applied to fluidization. International Journal of Multiphase Flow 22 (1975):21–66. doi:10.1016/S0301-9322(96)90004-X.
  • Ge, W., Ma, J, Zhang, J, Tang, D, Chen, F, Wang, X, Guo, Li, Li,J, 2005. Particle methods for multiscale simulation of complex flows. Chinese Science Bulletin 50 (11):1057–69. doi:10.1360/04wb0108
  • Geldart, D. 1973. Types of Gas Fluidization. Powder Technology 7:285–92. http://dns2.asia.edu.tw/~ysho/YSHO-English/1000CE/PDF/PowTec7,285.pdf.
  • Govindan, B., S. Chandra Babu Jakka, T. K. Radhakrishnan, A. K. Tiwari, T. M. Sudhakar, P. Shanmugavelu, A. K. Kalburgi, A. Sanyal, S. Sarkar. 2018. Investigation on kinetic parameters of combustion and oxy-combustion of calcined pet coke employing thermogravimetric analysis coupled to artificial neural network modeling. Energy and Fuels 32 (3):3995–4007. doi:10.1021/acs.energyfuels.8b00223
  • Govindan, B., P. Mohanmani, S. C. B. Jakka, Tiwari, A.K, Kalburgi.A.K, Sudhakar, T.M, Sanyal.A, Sarkar.S. 2020. Shape descriptors - settling characteristics of irregular shaped particles. Chemical Engineering Communications 1–9. doi:10.1080/00986445.2019.1710494
  • Govindan, B., J. S. Chandra Babu, Radhakrishnan. T.K, Tiwari, Anil.K, Kalburgi. A.K, Sashi Kumar, G.N, Manoj kumar.S, 2020. Optimisation of interaction parameters for CFD modelling of multiphase flow using NR method. International Journal of Computational Fluid Dynamics 1–19. doi:10.1080/10618562.2020.1743274
  • Govindan, B., P. Mohanmani, J. Chandra Babu Sarat, Tiwari, A.K, Kalburgi, A.K, Sudhakar, T.M, Sanyal. A, Sarkar, S. 2021 Shape descriptors - Settling characteristics of irregular shaped particles. Chemical Engineering Communications 1–9. doi:10.1080/00986445.2019.1710494
  • Govindan, B., S. C. B. Jakka, T. K. Radhakrishnan, A. K. Tiwari, P. Tulsyan, A. K. Kalburgi, and H. A. Balasubramanya. 2020. CFD approach in design of effective distributor for uniform dispersion of cohesive ultrafine particles in a downer reactor. Chemical Engineering and Processing - Process Intensification 157:108138. doi:10.1016/j.cep.2020.108138.
  • Johnston, P. M., H. I. De Lasa, and J. Zhu. 1999. Axial flow structure in the entrance region of a downer fluidized bed : Effects of the distributor design. Chemical Engineering Science 54:2161–73. doi:10.1016/S0009-2509(98)00422-9.
  • Kim, Y. N., C. Wu, and Y. Cheng. 2011. CFD simulation of hydrodynamics of gas–solid multiphase flow in downer reactors: Revisited. Chemical Engineering Science 66:5357–65. doi:10.1016/j.ces.2011.07.036.
  • Koratiya, V. K., S. Kumar, and S. Sinha. 2010. Modeling, simulation and optimization of FCC downer reactor. Petroleum and Coal 52 (3):183–92.
  • Lehner, P., and K. Wirth. 1999. Characterization of the flow pattern in a downer reactor. Chemical Engineering Science 54:5471–83. doi:10.1016/S0009-2509(99)00286-9.
  • Levenspiel, O. 1999. Chemical reaction engineering. John Wiley & Sons. doi:10.1021/ie990488g.
  • Li, S., W. Lin, and J. Yao. 2004. Modeling of the hydrodynamics of the fully developed region in a downer reactor. Powder Technology 145 (2):73–81. doi:10.1016/j.powtec.2004.04.040.
  • Limtrakul, S., N. Thanomboon, T. Vatanatham, P. Khongprom. 2008. DEM modeling and simulation of a down-flow circulating fluidized bed. Chemical Engineering Communications 195 (11):1328–44. doi:10.1080/00986440801963501
  • Liu, Y., X. Liu, S. Kallio, L. Zhou. 2011. Hydrodynamic predictions of dense gas-particle flows using a second-order-moment frictional stress model. Advanced Powder Technology 22 (4):504–11. doi:10.1016/j.apt.2010.07.003
  • Lu, X., S. Li, L. Du, J. Yao, W. Lin, H. Li. 2005. Flow structures in the downer circulating fluidized bed. Chemical Engineering Journal 112 (112):23–31. doi:10.1016/j.cej.2005.06.002
  • Ropelato, K., H. F. Meier, and M. A. Cremasco. 2005. CFD study of gas-solid behavior in downer reactors: An Eulerian-Eulerian approach. Powder Technology 154 (2–3):179–84. doi:10.1016/j.powtec.2005.05.005.
  • Shu, Z., G. Peng, J. Wang, N. Zhang, S. Li, W. Lin. 2014. Comparative CFD analysis of heterogeneous gas-solid flow in a countercurrent downer reactor. Industrial and Engineering Chemistry Research 53 (8):3378–84. doi:10.1021/ie403496a
  • Sundaresan, S., and N. R. Amundson. 1980a. Diffusion and reaction in a stagnant boundary layer about a carbon particle. 5. pseudo-steady-state structure and parameter sensitivity. Industrial & Engineering Chemistry Fundamentals 19:344–51. doi:10.1021/i160076a004.
  • Sundaresan, S., and N. R. Amundson. 1980b. Diffusion and reaction in a stagnant boundary layer about a carbon particle. 6. effect of water vapor on the pseudo-steady-state structure. Industrial & Engineering Chemistry Fundamentals 19:351–57. doi:10.1021/i160076a005.
  • Sundaresan, S., and N. R. Amundson. 1981. Diffusion and reaction in a stagnant boundary layer about a carbon particle. Part 7. Transient behavior and effect of water vapor. AIChE Journal 27 (4):678–86. doi:10.1002/aic.690270421.
  • Tsuji, Y., T. Kawaguchi, and T. Tanaka. 1993. Discrete particle simulation of two-dimensional fluidized bed. Powder Technology 77 (77):79–87. doi:10.1016/0032-5910(93)85010-7.
  • Vaishali, S., S. Roy, S. Bhusarapu, M. H. Al-Dahhan, M. P. Dudukovic. 2007. Numerical simulation of gas-solid dynamics in a circulating fluidized-bed riser with geldart group B particles. Industrial and Engineering Chemistry ResearcZ.h 46 (25):8620–28. doi:10.1021/ie0700819
  • Vaishali, S., S. Roy, and P. L. Mills. 2008. Hydrodynamic simulation of gas–solids downflow reactors. Chemical Engineering Science 63:5107–19. doi:10.1016/j.ces.2008.06.014.
  • Wei, F., Z. Wang, Y. Jin, Z Yu, W. Chen. 1994. Dispersion of lateral and axial solids in a cocurrent downflow circulating fluidized bed. Powder Technology 81:25–30. doi:10.1016/0032-5910(94)02854-0
  • Zhang, H., J.-X. Zhu, and M. A. Bergougnou. 1999. Hydrodynamics in downflow fluidized beds (1): Solids concentration profiles and pressure gradient distributions. Chemical Engineering Science 54 (22):5461–70. doi:10.1016/S0009-2509(99)00284-5.
  • Zhao, T., K. Liu, Y. Cui, M. Takei. 2010. Three-dimensional simulation of the particle distribution in a downer using CFD-DEM and comparison with the results of ECT experiments. Advanced Powder Technology 21 (6):630–40. doi:10.1016/j.apt.2010.06.009
  • Zhao, X., C. Glenn, Z. Xiao, S. Zhang. 2014. CFD development for macro particle simulations. International Journal of Computational Fluid Dynamics 28 (5):232–49. doi:10.1080/10618562.2014.924621

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.