308
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Study on the Physical, Chemical and Combustion Characteristics of Pyrolysis Semi-coke

, , , , , , & show all
Pages 434-455 | Received 15 Jun 2021, Accepted 17 Jul 2021, Published online: 26 Jul 2021

References

  • Ahmad, M. S., M. A. Mehmood, S. T. H. Taqvi, A. Elkamel, C. G. Liu, J. R. Xu, S. A. Rahimuddin, and M. Gull. 2017. Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresour. Technol. 245:491–501. doi:10.1016/j.biortech.2017.08.162.
  • Ai, Y. L., Y. Q. Yang, and X. X. Wang. 2009. Measurement of graphitization degree of carbon-carbon composites by X-ray diffraction. Coal Conv 32 (1):72–74.
  • Alvarez, A. G., M. Martı́nez-Escandell, M. Molina-Sabio, and F. Rodrı́guez-Reinoso. 1999. Pyrolysis of petroleum residues: Analysis of semi-cokes by X-ray diffraction. Carbon 37 (10):1627–32. doi:10.1016/S0008-6223(99)00085-8.
  • Davini, P., P. Ghetti, L. Bonfanti, and G. D. Michele. 1996. Investigation of the Combustion of Particles of Coal. Fuel 75 (9):1083–88. doi:10.1016/0016-2361(96)00073-7.
  • Feng, D. D., Y. J. Zhao, Y. Zhang, J. M. Gao, and S. Z. Sun. 2017. Changes of biochar physiochemical structures during tar H2O and CO2 heterogeneous reforming with biochar. Fuel Porces Technol 165:72–79. doi:10.1016/j.fuproc.2017.05.011.
  • Han, X. X., I. Kunlaots, X. M. Jiang, and E. M. Suuberg. 2014. Review of oil shale semi-coke and its combustion utilization. Fuel 126:143–61. doi:10.1016/j.fuel.2014.02.045.
  • Han, X. X., and X. M. Jiang. 2009. Effects of Retorting Factors on Combustion Properties of Shale Char. 1. Pyrolysis Characteristics. Energ Fuel 23 (2):677–82. doi:10.1021/ef800717g.
  • Han, X. X., X. M. Jiang, Z. G. Cui, J. W. Yan, and J. G. Liu. 2011. Effects of retorting factors on combustion properties of shale char Part 4. Combustion characteristics. Therm Anal Calorim 104 (2):771–79. doi:10.1007/s10973-010-1179-9.
  • He, J. Y., C. Zou, J. X. Zhao, C. Ma, and X. R. Zhang. 2019. Effects of microstructural evolutions of pyrolysis char and pulverized coal on kinetic parameters during combustion. J Iron Steel Res Int 26 (12):1273–84. doi:10.1007/s42243-019-00284-0.
  • He, R., J. Sato, and C. H. Chen. 2002. Modeling char combustion with fractal pore effects. Combust Sci Technol 174 (4):19–37. doi:10.1080/713713018.
  • He, W., Y. T. Liu, R. He, T. Ito, T. Suda, T. Fujimor, H. Ikeda, and J. Sato. 2013. Combustion rate for char with fractal pore characteristics. Combust Sci Technol 185 (11):1624–43. doi:10.1080/00102202.2013.822370.
  • Jiang, X. M., C. G. Zheng, C. Yan, D. C. Liu, J. R. Qiu, and J. B. Li. 2002. Physical structure and combustion properties of super fine pulverized coal particle. Fuel 81 (6):793–97. doi:10.1016/S0016-2361(01)00209-5.
  • Jiang, Y., P. J. Zong, B. Tian, F. F. Xu, Y. Y. Tian, Y. Y. Qiao, and J. H. Zhang. 2019. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS. Energy Convers. Manage. 179:72–80. doi:10.1016/j.enconman.2018.10.049.
  • Kozlowski, M. 2004. XPS study of reductively and non-reductively modified coals. Fuel 83 (3):259–65. doi:10.1016/j.fuel.2003.08.004.
  • Liu, S. Q., Y. Q. Niu, L. P. Wen, Y. Q. Kang, D. H. Wang, and S. E. Hui. 2020. Effects of physical structure of high heating-rate chars on combustion characteristics. Fuel 266:117059. doi:10.1016/j.fuel.2020.117059.
  • Lu, L., V. Sahajwalla, C. Kong, and H. D. Quantitative X-ray. 2001. Diffraction Analysis and Its Application to Various Coals. Carbon 39 (12):1821–33. doi:10.1016/S0008-6223(00)00318-3.
  • Lu, L. M., C. H. Kong, V. Sahajwalla, and D. Harris. 2002. Char structural ordering during pyrolysis and combustion and its influence on char reactivity. Fuel 81 (9):1215–25. doi:10.1016/S0016-2361(02)00035-2.
  • Maia, A. A. D., and L. C. de. Morais. 2016. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol. 204:157–63. doi:10.1016/j.biortech.2015.12.055.
  • Mu, C., S. Y. Zhang, Y. Li, H. Li, S. Y. Wu, and X. H. Huang. 2018. Evolution of microstructure and combustion reactivity of lignite during high temperature drying process. Dry Technol 36 (10):1170–78. doi:10.1080/07373937.2017.1390477.
  • Pope, C. G. 1997. X-Ray diffraction and the bragg equation. J. Chem. Educ. 74 (1):129–31. doi:10.1021/ed074p129.
  • Tian, H., Q. S. Hu, J. W. Wang, L. Liu, L. Yang, and A. V. Bridgwater. 2020. Steam gasification of Miscanthus derived char: The reaction kinetics and reactivity with correlation to the material composition and microstructure. Energy Convers. Manage. 219:113026. doi:10.1016/j.enconman.2020.113026.
  • Tian, Y. L., X. Z. Lan, Y. H. Song, C. B. Liu, and J. Zhou. 2015. Preparation and characterization of formed activated carbon from fine blue-coke. Int J Energy Res 39 (13):1800–06. doi:10.1002/er.3327.
  • Tong, W., Z. L. Cai, Q. C. Liu, S. Ren, and M. Kong. 2020. Effect of pyrolysis temperature on bamboo char combustion: Reactivity, kinetics and thermodynamics. Energy 211:118736. doi:10.1016/j.energy.2020.118736.
  • Wang, P. Q., C. A. Wang, M. B. Yuan, C. W. Wang, J. P. Zhang, Y. B. Du, Z. C. Tao, and D. F. Che. 2020. Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere. Appl. Energy 260:114203. doi:10.1016/j.apenergy.2019.114203.
  • Wang, X. L., R. He, and Y. L. Chen. 2008. Evolution of porous fractal properties during coal devolatilization. Fuel 87 (6):878–84. doi:10.1016/j.fuel.2007.05.038.
  • Washburn, E. W. 1921. The dynamics of capillary flow. Phys Rev 17 (3):273–83. doi:10.1103/PhysRev.17.273.
  • Xie, K. C. 2015. Structure and reactivity of coal: a survey of selected chinese coals. Berlin Heidelberg: Springer.
  • Xie, K. C., W. Y. Li, and W. Zhao. 2010. Coal chemical industry and its sustainable development in China. Energy 35 (11):4349–55. doi:10.1016/j.energy.2009.05.029.
  • Xie, X., H. S. Ai, and Z. G. Deng. 2020. Impacts of the scattered coal consumption on PM2.5 pollution in China. J. Clean. Prod. 245:118922. doi:10.1016/j.jclepro.2019.118922.
  • Xu, J., H. Tang, S. Su, J. W. Liu, K. Xu, K. Qian, Y. Wang, Y. B. Zhou, S. Hu, A. C. Zhang, et al. 2018. A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals. Appl. Energy 212:46–56. doi:10.1016/j.apenergy.2017.11.094.
  • Yang, Z. Y., L. Zhang, Y. Y. Zhang, M. Y. Bai, Y. C. Zhang, Z. H. Yue, and E. H. Duan. 2020. Effect of apparent activation energy in pyrolytic carbonization on the synthesis of MOFs-carbon involving thermal analysis kinetics and decomposition mechanism. Chem Eng J 395:124980. doi:10.1016/j.cej.2020.124980.
  • Yao, H. F., B. S. He, G. C. Ding, W. X. Tong, and Y. C. Kuang. 2019. Thermogravimetric analyses of oxy-fuel co-combustion of semi-coke and bituminous coal. Appl. Therm. Eng. 156:708–21. doi:10.1016/j.applthermaleng.2019.04.115.
  • Yi, B. J., L. Q. Zhang, F. Huang, Z. J. Xia, Z. H. Mao, J. W. Ding, and C. G. Zheng. 2015. Investigating the combustion characteristic temperature of 28 kinds of Chinese coal in oxy-fuel conditions. Energy Convers. Manage. 103:439–47. doi:10.1016/j.enconman.2015.06.053.
  • Zhang, J. H., J. Y. Liu, F. Evrendilek, W. M. Xie, J. H. Kuo, X. C. Zhang, and M. Buyukada. 2019a. Kinetics, thermodynamics, gas evolution and empirical optimization of cattle manure combustion in air and oxy-fuel atmospheres. Appl. Therm. Eng. 149:119–31.
  • Zhang, J. P., X. W. Jia, C. A. Wang, N. Zhao, P. Q. Wang, and D. F. Che. 2019b. Experimental investigation on combustion and NO formation characteristics of semi-coke and bituminous coal blends. Fuel 247:87–96.
  • Zhao, Y. Y., G. B. Zhao, R. Sun, H. Liu, Z. Z. Wang, L. Sihyun, and M. Kong. 2017. Effect of the COMBDry dewatering process on combustion reactivity and oxygen-containing functional groups of dried lignite. Energ Fuel 31 (4):4488–98. doi:10.1021/acs.energyfuels.6b03454.
  • Zhou, C. S., Y. L. Zhang, J. F. Wang, S. Xue, J. M. Wu, and J. P. Chang. 2017. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal. Int J Coal Geol 171:212–22. doi:10.1016/j.coal.2017.01.013.
  • Zhuang, X. Z., H. Zhan, Y. P. Song, Y. L. Yin, and C. Z. Wu. 2019. Structure-reactivity relationships of biowaste-derived hydrochar on subsequent pyrolysis and gasification performance. Energy Convers. Manage. 199:112014.1–112014.13. doi:10.1016/j.enconman.2019.112014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.