384
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Wall Temperature Effects on Ignition Characteristics of Liquid-phase Spray Impingement for Heavy-duty Diesel Engine at Low Temperatures

ORCID Icon, , , , , & show all
Pages 456-471 | Received 09 Jun 2021, Accepted 22 Jul 2021, Published online: 08 Aug 2021

References

  • Alpaslan, A., and Y. Nadir. 2018. Comparative assessment of different diesel engines fueled with 1-pentanol and diesel blends. Environ Prog. Sustainable Energy 121:800.
  • Andreassi, L., S. Ubertini, and L. Allocca. 2007. Experimental and numerical analysis of high pressure diesel spray–wall interaction. Int. J. Multiphase Flow 33 (7):742–65. doi:10.1016/j.ijmultiphaseflow.2007.01.003.
  • Arififin, Y. M., and M. Arai. 2010. The effect of hot surface temperature on diesel fuel deposit formation. Fuel 89 (5):934–42. doi:10.1016/j.fuel.2009.07.014.
  • Atmanli, A., and N. Yilmaz. 2018. A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition engine. Fuel 234:161–69. doi:10.1016/j.fuel.2018.07.015.
  • Atmanli, A., and N. Yilmaz. 2020. An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3-C5 alcohol blends in a diesel engine. Fuel 260:116357. doi:10.1016/j.fuel.2019.116357.
  • Bai, C. X., and A. D. Gosman. 1995. Development of methodology for spray impingement simulation. SAE Technical Paper 950283.
  • Bruneaux, G. 2005. Mixing process in high pressure diesel jets by normalized Laser Induced Exciplex Fluorescence Part II: Wall impinging versus free jet. SAE Technical Paper 2005:–01–2097.
  • Buyukkaya, E., and M. Cerit. 2007. Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method. Surf. Coat. Technol. 202 (2):398–402. doi:10.1016/j.surfcoat.2007.06.006.
  • Cen, C. Z., H. Wu, C.-F. Lee, L. J. Fan, and F. S. Liu. 2019. Experimental investigation on the sputtering and micro-explosion of emulsion fuel droplets during impact on a heated surface. International Journal of Heat and Mass Transfer 132:130–37. doi:10.1016/j.ijheatmasstransfer.2018.12.007.
  • Chen, B. L., L. Feng, Y. Wang, T. Y. Ma, H. F. Liu, and C. Geng. 2019. Spray and flame characteristics of wall-impinging diesel fuel spray at different wall temperatures and ambient pressures in a constant volume combustion vessel. Fuel 235:416–25. doi:10.1016/j.fuel.2018.07.154.
  • Du, W., Q. K. Zhang, W. H. Bao, and J. J. Lou. 2018. Effects of injection pressure on spray structure after wall impingement. Applied Thermal Engineering 129:1212–18. doi:10.1016/j.applthermaleng.2017.10.083.
  • Dunand, P., G. Castanet, M. Gradeck, D. Maillet, and F. Lemoine. 2013. Energy balance of droplets impinging onto a wall heated above the Leidenfrost temperature. International Journal of Heat and Fluid Flow 44:170–80. doi:10.1016/j.ijheatfluidflow.2013.05.021.
  • Egermann, J., M. Taschek, and A. Leipertz. 2002. Spray/wall interaction influences on the diesel engine mixture formation process investigated by spontaneous Raman scattering. Proceedings of the Combustion Institute 29 (1):617–23. doi:10.1016/S1540-7489(02)80079-7.
  • Feng, L., B. L. Chen, H. F. Liu, M. F. Yao, and C. Geng. 2017. Combustion characteristics of wall-impinging diesel fuel spray under different wall temperatures. SAE Technical Paper 2017:–01–2251.
  • Feng, L., Y. Wang, B. L. Chen, C. Geng, W. T. Yi, and Y. Q. Cui. 2019. OH, soot and temperature distributions of wall-impinging diesel fuel spray under different wall temperatures. SAE Technical Paper –01–2184.
  • Gong, Y. Y., L. G. Li, and Y. Z. Huang. 1997. Development and droplet size characteristics of wall impinging diesel fuel spray at high injection pressure. Prog. Nat. Sci. 05:614–15.
  • Lee, C.-F., Y. Wu, H. Wu, Z. C. Shi, L. Zhang, and F. S. Liu. 2019. The experimental investigation on the impact of toluene addition on low-temperature ignition characteristics of diesel spray. Fuel 254:115580. doi:10.1016/j.fuel.2019.05.163.
  • Li, Y. T., Y. C. Huang, S. S. Yang, K. Luo, R. X. Chen, and C. L. Tang. 2019. A comprehensive experimental investigation on the PFI spray impingement: Effect of impingement geometry, cross-flow and wall temperature. Applied Thermal Engineering 159:113848. doi:10.1016/j.applthermaleng.2019.113848.
  • Liu, F. S., Z. Zhang, H. Wu, Y. K. Li, Y. P. Ma, and X. R. Li. 2017. An investigation on a diesel jet’s ignition characteristics under cold-start conditions. Appl. Therm. Eng. 121:511–19.
  • Liu, H. F., B. L. Chen, L. Feng, Y. Wang, W. T. Yi, and M. F. Yao. 2018. Study on fuel distribution of wall-impinging diesel spray under different wall temperatures by Laser-Induced Exciplex Fluorescence (LIEF). Energies 11:1249.
  • Luo, H. L., K. Nishida, and Y. Ogata. 2019. Evaporation characteristics of fuel adhesion on the wall after spray impingement under different conditions through RIM measurement system. Fuel 258:116163.
  • Luo, H. L., Y. Jin, K. Nishida, Y. Ogata, J. Yao, and R. Chen. 2021. Microscopic characteristics of impinging spray sliced by a cone structure under increased injection pressures. Fuel 284:119033.
  • Ma, T. Y., L. Feng, H. Wang, H. F. Liu, and M. F. Yao. 2019. Analysis of near wall combustion and pollutant migration after spray impingement. Int J Heat Mass Transf 141:569–79.
  • Maes, N., N. Dam, B. Somers, T. Lucchini, G. D’Errico, and G. Hardy. 2018. Heavy-duty diesel engine spray combustion processes: Experiments and numerical simulations. SAE Technical Paper –01–1689.
  • Montanaro, A., L. Allocca, M. Lazzaro, and G. Meccariello. 2016. Impinging jets of fuel on a heated surface: Effects of wall temperature and injection conditions. SAE Technical Paper –01–0863.
  • Park, S. W., and C. S. Lee. 2004. Macroscopic and microscopic characteristics of a fuel spray impinged on the wall. Exp. Fluids 37:745–62.
  • Payri, R., J. Gimeno, G. Bracho, and D. Vaquerizo. 2016. Study of liquid and vapor phase behavior on diesel sprays for heavy duty engine nozzles. Appl. Therm. Eng. 107:365–78.
  • Pickett, L. M., and D. L. Siebers. 2005. Orifice diameter effects on diesel fuel jet flame structure. J. Eng. Gas. Turb Power 127:187–96.
  • Qin, M. X., Y. Guo, C. L. Tang, P. Zhang, and Z. H. Huang. 2020. Spreading and bouncing of liquid alkane droplets upon impacting on a heated surface. Int. J. Heat. Mass Transfer 159:120076.
  • Roque, A., F. Foucher, Q. Lamiel, B. Imoehl, N. Lamarque, and J. Helie. 2020. Impact of gasoline direct injection fuel films on exhaust soot production in a model experiment. Int. J. Engine. Res. 21:367–90.
  • Schiinemann, E., S. Fedrow, and A. Leipertz. 1998. Droplet size and velocity measurements for the characterization of a DI-diesel spray impinging on a flat wall. SAE Technical Paper 982545.
  • Shi, Z. C., C. F. Lee, H. Wu, H. Y. Li, Y. Wu, and L. Zhang. 2019a. Effect of nozzle diameter on macroscopic spray behavior of heavy-duty diesel engine under cold-start conditions. Atomization Spray 29:741–62.
  • Shi, Z. C., C. F. Lee, H. Wu, H. Y. Li, Y. Wu, and L. Zhang. 2020. Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions. Appl. Energ. 262:114552.
  • Shi, Z. C., C. F. Lee, H. Wu, Y. Wu, L. Zhang, and F. S. Liu. 2019b. Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions. Appl. Energ. 251:113307.
  • Shirota, M., M. A. V. Limbeek, C. Sun, A. Prosperetti, and D. Lohse. 2016. Dynamic Leidenfrost effect: Relevant time and length scales. Phys. Rev. Lett. 116:064501.
  • Siebers, 1998. DL. Liquid-phase fuel penetration in diesel sprays. SAE Technical Paper,980809.
  • Tang, Y. Z., D. M. Lou, C. G. Wang, P. Q. Tan, Z. Y. Hu, and Y. Zhang. 2020. Study of visualization experiment on the influence of injector nozzle diameter on diesel engine spray ignition and combustion characteristics. Energies 13:5337.
  • Tomonaga, T., K. Murai, T. Takano, and H. Sami. 1996. A study on combustion behavior of a diesel fuel spray impinging on a wall. SAE Technical Paper 960028.
  • Zhang, Y. Z., M. Jia, H. Liu, M. Z. Xie, and T. Y. Wang. 2015. Investigation of the characteristics of fuel adhesion formed by spray/wall interaction under diesel premixed charge compression ignition (PCCI) relevant conditions. Atomization Spray 25:933–68.
  • Zhang, Z., F. S. Liu, P. Wang, W. Du, and Y. P. Ma. 2018b. Ignition-characteristic research of the diesel fuel in combustion vessel simulated diesel engine cold start condition. J. Energy Eng. 144:12.
  • Zhang, Z., F. S. Liu, Y. F. An, H. B. Gao, W. Du, and Y. L. Gao. 2018a. Effect of wall surface temperature on ignition and combustion characteristics of diesel fuel spray impingement. Appl. Therm. Eng. 137:47–53.
  • Zhao, Z. H., X. C. Zhu, L. Zhao, J. Naber, and S. Y. Lee. 2019. Spray-wall dynamics of high-pressure impinging combustion. SAE Technical Paper 0067.
  • Zhu, X. C., N. Ahuja, J. C. Zhai, and S. Y. Lee. 2019. Investigation of the effects of heat transfer and thermophysical properties on dynamics of droplet-wall interaction. SAE Technical Paper –01–0296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.