321
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation Study on Coal Spontaneous Combustion: Effect of Porosity Distribution

, , , &
Pages 472-493 | Received 06 Apr 2021, Accepted 26 Jul 2021, Published online: 04 Aug 2021

References

  • Akgun, F., and R. H. Essenhigh. 2001. Self-ignition characteristics of coal stockpiles: Theoretical prediction from a two-dimensional unsteady-state model. Fuel 80 (3):409–15. doi:10.1016/S0016-2361(00)00097-1.
  • Al-Abbas, A. H., J. Naser, and D. Dodds. 2012. CFD modelling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station. Fuel 102:646–65. doi:10.1016/j.fuel.2012.06.028.
  • Beamish, B. B., and J. Theilera. 2019. Coal spontaneous combustion: Examples of the self-heating incubation process. Int. J. Coal Geol. 215 (1):103297. doi:10.1016/j.coal.2019.103297.
  • Deng, J., Y. Xiao, Q. Y. Li, J. H. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157 (1):261–69. doi:10.1016/j.fuel.2015.04.063.
  • Fan, S. X., D. Zhang, H. Wen, X. J. Cheng, X. R. Liu, Z. J. Yu and B. Hu. 2021. Enhancing coalbed methane recovery with liquid CO2 fracturing in underground coal mine: From experiment to field application. Fuel. 290 (15):119793. doi:10.1016/j.fuel.2020.119793.
  • Glushkov, D. O., G. V. Kuznetsov, and P. A. Strizhak. 2018. Experimental and numerical study of coal dust ignition by a hot particle. Appl. Therm. Eng. 133 (25):774–84. doi:10.1016/j.applthermaleng.2018.01.049.
  • Huang, Z. A., L. K. Yan, Y. H. Zhang, Y. K. Gao, X. H. Liu, Y. Q. Liu and Z. Li. 2019. Research on a new composite hydrogel inhibitor of tea polyphenols modified with polypropylene and mixed with halloysite nanotubes. Fuel. 253 (1):527–39. doi:10.1016/j.fuel.2019.03.152.
  • Huang, Z. A., Z. Z. Ma, S. Y. Song, R. Yang, Y. K. Gao, and Y. H. Zhang. 2018. Study on the influence of periodic weighting on the spontaneous combustion “three-zone” in a gob. J. Loss Prevent. Proc. 55:480–91. doi:10.1016/j.jlp.2018.07.020.
  • Joshi, K. A., V. Raghavan, and A. S. Rangwala. 2012. An experimental study of coal dust ignition in wedge shaped hot plate configurations. Combust. Flame 159 (1):376–84. doi:10.1016/j.combustflame.2011.06.003.
  • Krishnaswamy, S., P. K. Agarwal, and R. D. Gunn. 1996. Low-temperature oxidation of coal. 3. Modelling spontaneous combustion in coal stockpiles. Fuel 75 (3):353–62. doi:10.1016/0016-2361(95)00249-9.
  • Lei, C. K., J. Deng, K. Cao, L. Ma, Y. Xiao, and L. F. Ren. 2018. A random forest approach for predicting coal spontaneous combustion. Fuel 223:63–73. doi:10.1016/j.fuel.2018.03.005.
  • Li, D.-J., Y. Xiao, H.-F. Lü, F. Xu, K.-H. Liu, and C.-M. Shu. 2020. Effects of 1-butyl-3-methylimidazolium tetrafluoroborate on the exothermic and heat transfer characteristics of coal during low-temperature oxidation. Fuel 273:117589. doi:10.1016/j.fuel.2020.117589.
  • Li, Y. Q., X. Q. Shi, Y. T. Zhang, J. H. Xue, X. K. Chen, Y. Band Zhang, T. Ma. 2021. Numerical investigation on the gas and temperature evolutions during the spontaneous combustion of coal in a large-scale furnace. Fuel. 287 (1):119557. doi:10.1016/j.fuel.2020.119557.
  • Lohrer, C., M. Schmidt, and U. Krause. 2005. A study on the influence of liquid water and water vapour on the self-ignition of lignite coal-experiments and numerical simulations. J. Loss Prevent. Proc. 18 (3):167–77. doi:10.1016/j.jlp.2005.03.006.
  • Long, H., H. F. Lin, M. Yan, P. Chang, S. G. Li, and Y. Bai. 2021a. Molecular simulation of the competitive adsorption characteristics of CH4, CO2, N2, and multicomponent gases in coal. Powder Technol 385:348–56. doi:10.1016/j.powtec.2021.03.007.
  • Long, H., H.-F. Lin, M. Yan, Y. Bai, X. Tong, X.-G. Kong, and S.-G. Li. 2021b. Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal: Molecular dynamics. Fuel 292 (15):120268. doi:10.1016/j.fuel.2021.120268.
  • Ma, T., X. K. Chen, X. W. Zhai, and Y. E. Bai. 2019. Thermogravimetric and infrared spectroscopic studies of the spontaneous combustion characteristics of different pre-oxidized lignites. RSC Adv 9 (56):32476–89. doi:10.1039/C9RA05993H.
  • Park, H., A. S. Rangwala, and N. A. Dembsey. 2009. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests. J. Hazard. Mater. 168 (1):145–55. doi:10.1016/j.jhazmat.2009.02.010.
  • Schmal, D., J. H. Duyzer, and J. W. V. Heuven. 1987. A Model for the Spontaneous Heating of Coal. Fuel 64 (7):963–72. doi:10.1016/0016-2361(85)90152-8.
  • Shi, X. Q., Y. T. Zhang, X. K. Chen, and Y. B. Zhang. 2021b. Effects of thermal boundary conditions on spontaneous combustion of coal under temperature-programmed conditions. Fuel 295 (1):120591. doi:10.1016/j.fuel.2021.120591.
  • Shi, X. Q., Y. T. Zhang, X. K. Chen, Y. B. Zhang, and T. Ma. 2021a. Numerical study on the oxidation reaction characteristics of coal under temperature-programmed conditions. Fuel Process Technol 213:106671. doi:10.1016/j.fuproc.2020.106671.
  • Shi X. Q., Y. T. Zhang, X. K. Chen, Y. B. Zhang, Q. Ma and G. C. Lin. 2021d. The response of an ethanol pool fire to transverse acoustic waves. Fire Safety J. 125. 103416.
  • Shi X. Q., Y. T. Zhang, X. K. Chen, Y. B. Zhang, Q. Ma. 2021c. Characteristics of coal dust ignited by a hot particle. Process Saf. Environ. 153. 225–238.
  • Song, Z. Y., and C. Kuenzer. 2014a. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal Geol. 133:72–99. doi:10.1016/j.coal.2014.09.004.
  • Song, Z. Y., H. Q. Zhu, B. Tan, H. Y. Wang, and X. F. Qin. 2014b. Numerical study on effects of air leakages from abandoned galleries on hill-side coal fires. Fire Safety J 69:99–110. doi:10.1016/j.firesaf.2014.08.011.
  • Tang, Y. B. 2015. Sources of underground CO: Crushing and ambient temperature oxidation of coal. J. Loss Prevent. Proc. 38:50–57. doi:10.1016/j.jlp.2015.08.007.
  • Shi X. Q., Y. T. Zhang, X. K. Chen, Y. B. Zhang, Q. Ma and G. C. Lin. 2021d. The response of an ethanol pool fire to transverse acoustic waves. Fire Safety J. 125. 103416. .
  • Wang, T., Z. M. Luo, H. Wen, F. M. Cheng, L. T. Liu, Y. Su, C. Liu, J. Zhao, J. Deng, M. Yu, et al. 2021. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy. 214 (1):119042. doi:10.1016/j.energy.2020.119042.
  • Wang, Y., W. C. Schaffers, S. Tan, J. S. Kim, R. D. Boardman, and D. A. Bell. 2020. Low temperature heating and oxidation to prevent spontaneous combustion using Powder River Basin coal. Fuel Process Technol 199:106221. doi:10.1016/j.fuproc.2019.106221.
  • Wen, H., H. Wang, S. X. Fan, Z. B. Li, J. Chen, X. J. Cheng, B. K. Cheng and Z.J. Yu. 2020. Improving coal seam permeability and displacing methane by injecting liquid CO2: An experimental study. Fuel. 281 (1):118747. doi:10.1016/j.fuel.2020.118747.
  • Wu, D. J., F. Norman, M. Schmidt, M. Vanierschot, F. Verplaetsen, J. Berghmans, and E. Van Den Bulck. 2017. Numerical investigation on the self-ignition behaviour of coal dust accumulations: The roles of oxygen, diluent gas and dust volume. Fuel. 188 (15):500–10. doi:10.1016/j.fuel.2016.10.063.
  • Wu, D. J., X. Y. Huang, F. Norman, F. Verplaetsen, J. Berghmans, and E. V. Bulck. 2015. Experimental investigation on the self-ignition behaviour of coal dust accumulations in oxy-fuel combustion system. Fuel 160 (15):245–54. doi:10.1016/j.fuel.2015.07.050.
  • Xia, T. Q., F. B. Zhou, F. Gao, J. H. Kang, J. H. Liu, and J. G. Wang. 2015. Simulation of coal self-heating processes in underground methane-rich coal seams. Int. J. Coal Geol. 141-142 (1):1–12. doi:10.1016/j.coal.2015.02.007.
  • Yuan, L. M., and A. C. Smith. 2008. Numerical study on effects of coal properties on spontaneous heating in longwall gob areas. Fuel 87 (15–16):3409–19. doi:10.1016/j.fuel.2008.05.015.
  • Zhang, J., T. Ren, Y. T. Liang, and Z. W. Wang. 2016a. A review on numerical solutions to self-heating of coal stockpile: Mechanism, theoretical basis, and variable study. Fuel 182 (15):80–109. doi:10.1016/j.fuel.2016.05.087.
  • Zhang, J., Y. T. Liang, T. Ren, Z. W. Wang, and G. D. Wang. 2016b. Transient CFD modelling of low-temperature spontaneous heating behaviour in multiple coal stockpiles with wind forced convection. Fuel Process Technol 149:55–74. doi:10.1016/j.fuproc.2016.04.011.
  • Zhang, Y. T., B. Zhang Y, Y. Q. Li, X. Q. Shi, and Y. J. Zhang. 2021b. Heat effects and kinetics of coal spontaneous combustion at various oxygen contents. Energy 234 (1): 121299.121299.
  • Zhang, Y. T., Y. B. Zhang, Y. Q. Li, J. H. Xue, X. Q. Shi, and C. P. Yang. 2021a. Low-temperature oxidation characteristics of coals at the methane-containing atmosphere. J. Therm. Anal. Calorim. doi:10.1007/s10973-021-10735-0.
  • Zhang, Y. T., Y. B. Zhang, Y. Q. Li, Q. P. Li, J. Zhang, and C. P. Yang. 2020. Study on the characteristics of coal spontaneous combustion during the development and decaying processes. Process Saf. Environ. 138:9–17. doi:10.1016/j.psep.2020.02.038.
  • Zhang, Y. T., Y. R. Liu, X. Q. Shi, C. P. Yang, W. F. Wang, and Y. Q. Li. 2018. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 233:68–76. doi:10.1016/j.fuel.2018.06.052.
  • Zheng, Y. N., Q. Z. Li, G. Y. Zhang, Y. Zhao, P. F. Zhu, X. Ma and X.W. Li, 2021. Study on the coupling evolution of air and temperature field in coal mine goafs based on the similarity simulation experiments. Fuel. 283 (1):118905. doi:10.1016/j.fuel.2020.118905.
  • Zhu, H. Q., Z. Y. Song, B. Tan, and Y. Z. Hao. 2013. Numerical investigation and theoretical prediction of self-ignition characteristics of coarse coal stockpiles. J. Loss Prevent. Proc. 26 (1):236–44. doi:10.1016/j.jlp.2012.11.006.
  • Zhuo, H., B. T. Qin, Q. H. Qin, and Z. W. Su. 2019. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams. Process Saf. Environ. 131:246–54. doi:10.1016/j.psep.2019.09.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.