149
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Determining the Spontaneous Combustion Period and Limit Parameters of Coal: A Large-Scale Furnace Experiment

, , ORCID Icon, &
Pages 494-507 | Received 15 Apr 2021, Accepted 30 Jul 2021, Published online: 08 Aug 2021

References

  • Agarwal, R., D. Singh, D. S. Chauhan, and K. P. Singh. 2006. Detection of coal mine fires in the Jharia coal field using NOAA/AVHRR data. J. Geophys. Eng. 3:212–18.
  • Beamish, B. B., M. A. Barakat, and J. D. S. George. 2000. Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects. Thermochim. Acta 362:79–87.
  • Biswal, S. S., S. Raval, and A. K. Gorai. 2019. Delineation and mapping of coal mine fire using remote sensing data-a review. Int. J. Remote. Sens. 40:6499–529.
  • Cliff, D., R. Davis, A. Bennet, G. Galvin, and F. Clarkson 1998. Large scale laboratory testing of the spontaneous combustibility of Australian coals. In: Queensland Mining Industry Health and Safety Conference Brisbane. Austrilia: Queensland Mining Council., 175–79.
  • Deng, J., J. Xu, L. Li, X. Zhang, and H. Wen. 1999a. Investigation on the relation of the rate of oxygen consumption and the size of coal sample. J. Xi’an Jiaotong Univ. 33:106–07.
  • Deng, J., J. Xu, X. Zhang, H. Wen, and L. Li. 1999b. Investigation on the relation of coal low temperature oxidation and the size of coal sample. Coal. 8:13–15.
  • Deng, J., L. Liu, C. Lei, C. Wang, and Y. Xiao. 2021b. Spatiotemporal distributions of the temperature and index gases during the dynamic evolution of coal spontaneous combustion. Combust. Sci. Technol. 193:1679–95.
  • Deng, J., W. L. Chen, C. Liang, X. F. Wang, Y. Xiao, C. P. Wang, and C. M. Shu. 2021a. Correction model for CO detection in the coal combustion loss process in mines based on GWO-SVM. J. Loss. Prev. Process. Ind. 5:104439.
  • Deng, J., Y. Xiao, Q. Li, J. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel. 157:261–69.
  • Engle, M. A., L. F. Radke, E. L. Heffern, J. M. K. O’Keefe, J. C. Hower, C. D. Smeltzer, . A. Schure. 2012. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA. Sci. Total. Environ. 420:146–59.
  • Feng, H., J. Zhou, B. Chai, A. Zhou, J. Li, H. Zhu, . D. Su. 2020. Groundwater environmental risk assessment of abandoned coal mine in each phase of the mine life cycle: A case study of Hongshan coal mine, North China. Environ. Sci. Pollut. Res. 27:42001–21.
  • Gupta, N., and T. H. Syed 2012. Mapping of potential coal-mine fire zones in Jharia coalfield using differential InSAR (DInSAR). 9th Biennial International Conference & Exposition on Petroleum Geophysics, Hyderabad, India., 1–6.
  • Heffern, E. L., and D. A. Coates. 2004. Geologic history of natural coal-bed fires, Powder River basin, USA. Int. J. Coal. Geol. 59:25–47.
  • Kemp, W., W. Steedman, M. A. Thomson, and D. A. Scott. 1985. Comparative reactivities of coal asphaltenes during hydropyrolysis. Fuel. 64:1379–82.
  • Kuenzer, C., and G. B. Stracher. 2012. Geomorphology of coal seam fires. Geomorphology. 138:209–22.
  • Kuenzer, C., J. Zhang, Y. Sun, Y. Jia, and S. Dech. 2012. Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities. Int. J. Coal. Geol. 102:75–86.
  • Li, Q. W., Y. Xiao, K. Q. Zhong, C. M. Shu, H. F. Lü, and J. Deng. 2020. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel. 275:117981.
  • Liang, Y. T., S. L. Song, H. Z. Luo, Q. Lin, W. B. Feng, and F. C. Tian. 2015. An analytic solution of coal spontaneous combustion period calculation model. J. China Coal Soc. 40:2110–16.
  • Pandey, J., N. K. Mohalik, R. K. Mishra, A. Khalkho, D. Kumar, and V. K. Singh. 2015. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire. Technol. 51:227–45.
  • Qi, X., D. Wang, J. A. Milke, and X. Zhong. 2011. Crossing point temperature of coal. Min. Sci. Technol. 21:255–60.
  • Querol, X., M. Izquierdo, E. Monfort, E. Alvarez, O. Font, T. Moreno, . Y. Wang. 2008. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int. J. Coal. Geol. 75:93–104.
  • Singh, R. V. K. 2013. Spontaneous heating and fire in coal mines. Procedia Eng. 62:78–90.
  • Smith, A., Y. Miron, and C. Lazzara 1991. Large-scale studies of spontaneous combustion of coal. US Bureau of Mines, Report of Investigation., 346.
  • Song, Z., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal. Geol. 133:72–99.
  • Stott, J. B., B. J. Harris, and P. J. Hansen. 1987. A ‘full-scale’ laboratory test for the spontaneous heating of coal. Fuel. 66:1012–13.
  • Stracher, G. B. 2004. Coal fires burning around the world: A global catastrophe. Int. J. Coal. Geol. 59:1–6.
  • Stracher, G. B., A. Prakash, P. Schroeder, J. McCormack, X. Zhang, P. V. Dijk, et al. D. Blake. 2005. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia. Am. Mineral. 90:1729–39.
  • Stracher, G. B., and T. P. Taylor. 2004. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. Int. J. Coal. Geol. 59:7–17.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Pathways for production of CO2 and CO in low-temperature oxidation of coal. Energy Fuels. 17:150–58.
  • Wen, H., Z. Yu, J. Deng, and X. Zhai. 2017. Spontaneous ignition characteristics of coal in a large-scale furnace: An experimental and numerical investigation. Appl. Therm. Eng. 114:583–92.
  • Xiao, Y., Q. W. Li, J. Deng, C. M. Shu, and W. Wang. 2017. Experimental study on the corresponding relationship between the index gases and critical temperature for coal spontaneous combustion. J. Therm. Anal. Calorim. 127:1009–17.
  • Yang, Y., Z. Li, S. Hou, F. Gu, S. Gao, and Y. Tang. 2014. The shortest period of coal spontaneous combustion on the basis of oxidative heat release intensity. Int. J. Min. Sci. Technol. 24:99–103.
  • Yin, L., Y. Xiao, K. Q. Zhong, C. M. Shu, and Y. Tian. 2021. Temperature effects on thermal diffusivity of bituminous coal using different pre-oxidation levels in a nitrogenous atmosphere. Fuel. 288:119640.
  • Zhang, Y., J. Wang, J. Wu, S. Xue, Z. Li, and L. Chang. 2015. Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal. Int. J. Coal. Geol. 140:1–8.
  • Zhong, K. Q., Y. Xiao, X. Zhao, L. Yin, C. M. Shu, and Y. Tian. 2021. Predictive ability of four statistical models for determining the influence of coal thermophysical properties during the initial phase of coal spontaneous combustion. Fuel. 292:120348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.