349
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of Porous Materials on Explosion Venting Overpressure and Flame of CH4/air Premixed Gas

, , , , , , & show all
Pages 508-529 | Received 12 Jan 2021, Accepted 08 Aug 2021, Published online: 30 Aug 2021

References

  • Alexiou,A., G. E. Andrews, and H. Phylaktou. 1997. A comparison between end-vented and side-vented gas explosions in large L/D vessels. Process Saf. Environ. Protect. 75 (1):9–13. doi:10.1205/095758297528715.
  • Babkin, V. S., A. A. Korzhavin, and V. A. Bunev. 1991. Propagation of premixed gaseous explosion flames in porous media. Combust. Flame. 87:182–90. doi:10.1016/0010-2180(91)90168-B.
  • Bao, Q., Q. Fang, Y. D. Zhang, L. Chen, S. G. Yang, and Z. Li. 2016. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane–air mixtures. Fuel 175:40–48. doi:10.1016/j.fuel.2016.01.084.
  • Bauwens, C. R., J. Chaffee, and S. Dorofeev. 2008. Experimental and numerical study of methane-air deflagrations in a vented enclosure. Fire Safety Science 9:1043–54. doi:10.3801/IAFSS.FSS.9-1043.
  • Bauwens, C. R., J. Chaffee, and S. Dorofeev. 2010. Effect of ignition location, vent size, and obstacles on vented explosion overpressures in propane-air mixtures. Combust. Sci. Technol. 182:1915–32. doi:10.1080/00102202.2010.497415.
  • Bauwens, C. R., J. Chaffee, and S. Dorofeev. 2011. Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures. Int. J. Hydrog. Energy. 36:2329–36. doi:10.1016/j.ijhydene.2010.04.005.
  • Bradley, D., and A. Mitcheson. 1978. The venting of gaseous explosions in spherical vessels. I—Theory. Combust Flame 32:221–36. doi:10.1016/0010-2180(78)90098-6.
  • Cao, Y., J. Guo, K. L. Hu, L. F. Xie, and B. Li. 2017. Effect of ignition location on external explosion in hydrogen–air explosion venting. Int. J. Hydrog. Energy. 42:10547–54. doi:10.1016/j.ijhydene.2017.01.095.
  • Cao, Y., B. Li, and K. H. Gao. 2018. Pressure characteristics during vented explosion of ethylene-air mixtures in a square vessel. Energy 151:26–32. doi:10.1016/j.energy.2018.03.012.
  • Chao, J., C. R. Bauwens, and S. B. Dorofeev. 2011. An analysis of peak overpressures in vented gaseous explosions. Proc. Combust. Inst. 33:2367–74. doi:10.1016/j.proci.2010.06.144.
  • Chen, P., F. J. Huang, Y. D. Sun, and X. X. Chen. 2017. Effects of metal foam meshes on premixed methane-air flame propagation in the closed duct. J. Loss Prev. Process Ind. 47:22–28. doi:10.1016/j.jlp.2017.02.015.
  • Chen, Z. H., B. C. Fan, X. H. Jiang, and J. F. Ye. 2006. Investigations of secondary explosions induced by venting. Process Saf. Prog. 25:255–61. doi:10.1002/prs.10139.
  • Chow, S. K., R. P. Cleaver, M. Fairweather, and D. G. Walker. 2000. An experimental study of vented explosions in a 3:1 aspect ratio cylindrical vessel. Process Saf. Environ. Protect. 78: 425–33. Get rights and content. doi:10.1205/095758200530970.
  • Ciccarelli, G. 2012. Explosion propagation in inert porous media. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 370:647–66. doi:10.1098/rsta.2011.0346.
  • Cooper, M. G., M. Fairweather, and J. P. Tite. 1986. On the mechanisms of pressure generation in vented explosions. Combust. Flame. 65:1–14. doi:10.1016/0010-2180(86)90067-2.
  • Cubbage, P. A., and W. A. Simmonds. 1955. An investigation of explosion reliefs for industrial drying ovens. Trans. Institution Chem. Eng. 105:470–526.
  • Cui, Y. Y., Z. R. Wang, K. B. Zhou, L. S. Ma, M. H. Liu, and J. C. Jiang. 2017. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines. J. Loss Prev. Process Ind. 45:66–77. doi:10.1016/j.jlp.2016.11.017.
  • EN 14994. 2007. Gas explosion venting protective systems. Brussels, UK: European Committee for Standardization.
  • Fakandu, B. M., G. E. Andrews, and H. N. Phylaktou. 2015. Vent burst pressure effects on vented gas explosion reduced pressure. J. Loss Prev. Process Ind. 36:429–38. doi:10.1016/j.jlp.2015.02.005.
  • Guo, J., Q. Li, D. D. Chen, K. L. Hu, K. Shao, C. M. Guo, and C. J. Wang. 2015. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel. Int. J. Hydrog. Energy. 40:6478–86. doi:10.1016/j.ijhydene.2015.03.059.
  • Guo, J., C. J. Wang, and X. Y. Liu. 2016. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of equivalence ratio. Ind. Eng. Chem. Res. 55:9518–23. doi:10.1021/acs.iecr.6b02029.
  • Harrison, A. J., and J. A. Eyre. 1987. External explosions” as a result of explosion venting. Combust. Sci. Technol. 52:91–106. doi:10.1080/00102208708952570.
  • Jiang, X. H., B. C. Fan, J. F. Ye, and G. Dong. 2005. Experimental investigations on the external pressure during venting. J. Loss Prev. Process Ind. 18:21–26. doi:10.1016/j.jlp.2004.09.002.
  • Joo, H. I., K. Duncan, and G. Ciccarelli. 2006. Flame-quenching performance of ceramic foam. Combust. Sci. Technol. 178:1755–69. doi:10.1080/00102200600788692.
  • Kundu, S. K., J. Zanganeh, D. Eschebach, N. Mahinpey, and B. Moghtaderi. 2017. Explosion characteristics of methane - air mixtures in a spherical vessel connected with a duct. Process Saf. Environ. Protect. 111:85–93. doi:10.1016/j.psep.2017.06.014.
  • Li, Y. C., M. S. Bi, B. Li, Y. H. Zhou, and W. Gao. 2018. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels. Fuel 233:269–82. rights and content. doi:10.1016/j.fuel.2018.06.042Get.
  • McCann, D. P. J., G. O. Thomas, and D. H. Edwards. 1985. Gasdynamics of vented explosions part I: Experimental studies. Combust. Flame. 59:233–50. doi:10.1016/0010-2180(85)90128-2.
  • Molkov, V., D. Makarov, and J. Puttock. 2006. The nature and large eddy simulation of coherent deflagrations in a vented enclosure-atmosphere system. J. Loss Prev. Process Ind. 19:121–29. doi:10.1016/j.jlp.2005.05.006.
  • NFPA 68. 2018. Standard on explosion protection by deflagration venting. Quincy, MA: National Fire Protection Association.
  • Nie, B. S., L. L. Yang, and J. W. Wang. 2016. Experiments and mechanisms of gas explosion suppression with foam ceramics. Combust. Sci. Technol. 188:2117–27. doi:10.1080/00102202.2016.1218161.
  • Ogunfuye, S., H. Sezer, F. Kodakoglu, H. F. Farahani, A. S. Rangwala, and V. Akkerman. 2021. Dynamics of explosions in cylindrical vented enclosures validation of a computational model by experiments. Fire 4:9. doi:10.3390/fire4010009.
  • Quillatre, P., O. Vermorel, T. Poinsot, and P. Ricoux. 2013. Large eddy simulation of vented deflagration. Ind. Eng. Chem. Res. 52:11414–23. doi:10.1021/ie303452p.
  • Radulescu, M. I., and J. H. S. Lee. 2002. The failure mechanism of gaseous detonations: Experiments in porous wall tubes. Combust. Flame. 131:29–46. doi:10.1016/S0010-2180(02)00390-5.
  • Rui, S. C., J. Guo, G. Li, and C. J. Wang. 2018. The effect of vent burst pressure on a vented hydrogen–air deflagration in a 1 m3 vessel. Int. J. Hydrog. Energy. 43:21169–76. doi:10.1016/j.ijhydene.2018.09.124.
  • Rui, S. C., Q. Li, J. Guo, and X. X. Sun. 2021. Experimental and numerical study on the effect of low vent burst pressure on vented methane-air deflagrations. Process Saf. Environ. Protect. 146:35–42. doi:10.1016/j.psep.2020.08.028.
  • Russo, P., and A. D. Benedetto. 2007. Effects of a duct on the venting of explosions—critical review. Process Saf. Environ. Protect. 85:9–22. doi:10.1205/psep.04268.
  • Sezer, H., F. Kronz, V. Akkerman, and A. S. Rangwala. 2017. Methane-induced explosions in vented enclosures. J. Loss Prev. Process Ind. 48:199–206. doi:10.1016/j.jlp.2017.04.009.
  • Spalding, D. B. 1957. A theory of inflammability limits and flame-quenching. Proc. R. Soc. A-Math. Phys. Eng. Sci. 240:2053–9169. doi:10.1098/rspa.1957.0068.
  • Sun, J. H., Y. Zhao, C. R. Wei, S. Xie, and D. H. Huang. 2011. The comparative experimental study of the porous materials suppressing the gas explosion. Procedia Eng. 26:954–60. doi:10.1016/j.proeng.2011.11.2262.
  • Sun, Z. Y. 2018. Explosion pressure measurement of 50% H2-50% CO synthesis gas - air mixtures in various turbulent ambience. Combust. Sci. Technol. 190:1007–22. doi:10.1080/00102202.2018.1424141.
  • Tomlin, G., D. M. Johnson, P. Cronin, H. N. Phylaktou, and G. E. Andrews. 2015. The effect of vent size and congestion in large-scale vented natural gas/air explosions. J. Loss Prev. Process Ind. 35:169–81. doi:10.1016/j.jlp.2015.04.014.
  • Ugarte, O. J., V. Akkerman, and A. S. Rangwala. 2016. A computational platform for gas explosion venting. Process Saf. Environ. Protect. 99:167–74. doi:10.1016/j.psep.2015.11.001.
  • Valera-Medina, A., S. Morris, J. Runyon, D. G. Pugh, R. Marsh, P. Beasley, and T. Hughes. 2015. Ammonia, methane and hydrogen for gas turbines. Energy Procedia 75:118–23. doi:10.1016/j.egypro.2015.07.205.
  • Wang, M. M., X. P. Wen, S. M. Zhang, F. H. Wang, Q. F. Zhu, R. K. Pan, and W. T. Ji. 2020. Effect of metal foam mesh on flame propagation of biomass-derived gas in a half-open duct. ACS Omega 5:20643–52. doi:10.1021/acsomega.0c03055.
  • Wen, X. P., M. Z. Xie, M. G. Yu, G. Li, and W. T. Ji. 2013. Porous media quenching behaviors of gas deflagration in the presence of obstacles. Exp. Therm. Fluid Sci. 50:37–44. doi:10.1016/j.expthermflusci.2013.05.002.
  • Willacy, S. K., H. N. Phylaktou, G. E. Andrews, and G. Ferrara. 2007. Stratified propane–air explosions in a duct vented geometry: Effect of concentration, ignition and injection position. Process Saf. Environ. Protect. 85:153–61. doi:10.1205/psep06020.
  • Yang, K., Q. R. Hu, S. H. Sun, P. F. Lv, and L. Pang. 2019. Research progress on multi-overpressure peak structures of vented gas explosions in confined spaces. J. Loss Prev. Process Ind. 62:103969. doi:10.1016/j.jlp.2019.103969.
  • Yu, J. Z., V. Vuorinen, O. Kaario, T. Sarjovaara, and M. Larmi. 2013. Visualization and analysis of the characteristics of transitional underexpanded jets. Int. J. Heat Fluid Flow. 44:140–54. doi:10.1016/j.ijheatfluidflow.2013.05.015.
  • Yu, M. G., S. J. Wan, K. Zheng, P. K. Guo, T. X. Chu, and Z. Yuan. 2017. Influence on the methane/air explosion characteristics of the side venting position in a pipeline. Process Saf. Environ. Protect. 111:292–99. doi:10.1016/j.psep.2017.07.017.
  • Zanganeh, J., M. J. Ajrash Al-Zuraiji, and B. Moghtaderi. 2020. Capture and mitigation of fugitive methane: Examining the characteristics of methane explosions in an explosion chamber connected to a venting duct. Energy Fuels 34:645–54. doi:10.1021/acs.energyfuels.9b02942.
  • Zhuang, C. J., Z. R. Wang, K. Zhang, Y. W. Lu, J. W. Shao, and Z. Dou. 2020. Explosion suppression of porous materials in a pipe-connected spherical vessel. J. Loss Prev. Process Ind. 65:104106. doi:10.1016/j.jlp.2020.104106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.