233
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Study on the Effects of Ethanol-gasoline Octane Number on Anti-knock Performance in Direct-injection Gasoline Engine

, , , , &
Pages 530-556 | Received 25 Mar 2021, Accepted 08 Aug 2021, Published online: 22 Aug 2021

References

  • Aleiferis, P. G., M. K. Behringer, D. Oudenijeweme, and P. Freeland. 2017. Insights into stoichiometric and lean combustion phenomena of gasoline–butanol, gasoline–ethanol, iso-octane–butanol, and iso-octane–ethanol blends in an optical Spark-Ignition Engine. . Combustion Science and Technology 189 (6):1013–60. doi:10.1080/00102202.2016.1271796.
  • Al-Hasan, M. 2003. Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Convers. Manag. 44 (9):1547–61. doi:10.1016/S0196-8904(02)00166-8.
  • Chen, L. F., and R. Stone. 2011. Measurement of enthalpies of vaporization of isooctane and ethanol blends and their effects on PM emissions from a GDI Engine. Energy & Fuels 25 (3):1254–59. doi:10.1021/ef1015796.
  • Feng, H., J. Zhang, X. Wang, and H. Lee. 2018. Analysis of auto-ignition characteristics of low-alcohol/iso-octane blends using combined chemical kinetics mechanisms. Fuel 234:836–49. doi:10.1016/j.fuel.2018.07.008.
  • Foong, T. M., K. J. Morganti, M. J. Brear, G. Da Silva, Y. Yang, and F. L. Dryer. 2014. The octane numbers of ethanol blended with gasoline and its surrogates. Fuel 115:727–39. doi:10.1016/j.fuel.2013.07.105.
  • Foong, T. M., K. J. Morganti, M. J. Brear, G. D. Silva, Y. Yang, and F. L. Dryer. 2013. The effect of charge cooling on the RON of ethanol/gasoline blends. SAE Int J Fuels Lub 6:34–43.
  • Kalghatgi, G., H. Babiker, and J. Badra. 2015. A simple method to predict knock using toluene, n-heptane and iso-octane blends (TPRF) as gasoline surrogates. SAE Technical Paper 2015-01-0757.
  • Kalghatgi, G., J. M. Kai, I. Algunaibet, and M. Sarathy. 2016. Knock prediction using a simple model for ignition delay. SAE Technical Paper 2016-01-0702.
  • Knop, V., M. Loos, C. Pera, and N. Jeuland. 2014. A linear-by-mole blending rule for octane numbers of n-heptane/iso-octane/toluene mixtures. Fuel 115:666–73. doi:10.1016/j.fuel.2013.07.093.
  • Lee, C., A. Ahmed, E. F. Nasir, J. Badra, G. Kalghatgi, S. M. Sarathy, H. Curran, and A. Farooq. 2017. Autoignition characteristics of oxygenated gasolines. Combustion and Flame 186:114–28. doi:10.1016/j.combustflame.2017.07.034.
  • Leone, T. G., J. E. Anderson, R. S. Davis, A. Iqbal, R. A. Reese 2nd, M. H. Shelby, and W. M. Studzinski. 2015. The effect of compression ratio, fuel octane rating, and ethanol content on spark-ignition engine efficiency. Environ. Sci. Technol. 49 (18):10778–89. doi:10.1021/acs.est.5b01420.
  • Li, Y., A. Alfazazi, B. Mohan, E. A. Tingas, J. Badra, H. G. Im, and S. M. Sarathy. 2019. Development of a reduced four-component (toluene/n-heptane/iso-octane/ethanol) gasoline surrogate model. Fuel 247:164–78. doi:10.1016/j.fuel.2019.03.052.
  • Liberman, M. A., M. F. Ivanov, O. E. Peil, D. M. Valiev, and L. E. Eriksson. 2004. Numerical modeling of the propagating flame and knock occurrence in spark-ignition engines. Combustion Science and Technology 177 (1):151–82. doi:10.1080/00102200590883813.
  • Lobato, P., A. Prakash, D. Doyle, R. Cracknell, A. Jones, V. Natarajan, M. Hinojosa, and Y. S. Jo. 2016. Understanding the octane appetite of modern vehicles. SAE Int J Fuels Lubr. 9: 345–357.
  • Orlebar, C. N., A. Joedicke, and W. Studzinski. 2014. The effects of octane, sensitivity and K on the performance and fuel economy of a direct injection spark ignition vehicle. SAE Technical Paper 2014-01-1216.
  • Park, S., S. Woo, H. Oh, and K. Lee. 2017. Effects of various lubricants and fuels on pre-ignition in a turbocharged direct-injection spark-ignition engine. Energy & Fuels 31 (11):12701–11. doi:10.1021/acs.energyfuels.7b01052.
  • Qiu, L., Y. Zheng, Y. Hua, Y. Zhuang, Y. Qian, and X. Cheng. 2021. Effects of water vapor addition on the flame structure and soot formation in a laminar ethanol/air coflow flame. Combustion Science and Technology 193 (4):626–42. doi:10.1080/00102202.2019.1667340.
  • Remmert, S., S. Campbell, R. Cracknell, A. Schuetze, A. Lewis, K. Giles, S. Akehurst, J. Turner, A. Popplewell, and R. Patel. 2014. Octane appetite: The relevance of a lower limit to the MON specification in a downsized, highly boosted DISI engine. SAE International Journal of Fuels and Lubricants 7 (3):743–55. doi:10.4271/2014-01-2718.
  • Rothe, M., T. Heidenreich, U. Spicher, and A. Schubert. 2006. Knock behavior of SI-engines: Thermodynamic analysis of knock onset locations and knock intensities. SAE 2006 World Congress 2732-2745.
  • Schifter, I., L. Diaz, R. Rodriguez, P. Gomez, and U. Gonzalez. 2011. Combustion and emissions behavior for ethanol–gasoline blends in a single cylinder engine. Fuel 90 (12):3586–92. doi:10.1016/j.fuel.2011.01.034.
  • Silva, G., J. W. Bozzelli, L. Liang, and J. T. Farrell. 2009. Ethanol Oxidation: Kinetics of the α-Hydroxyethyl Radical + O 2 Reaction. The Journal of Physical Chemistry A 113 (31):8923–33. doi:10.1021/jp903210a.
  • Singh, E., J. Badra, M. Mehl, and S. M. Sarathy. 2017. Chemical kinetic insights into the octane number and octane sensitivity of gasoline surrogate mixtures. Energy & Fuels 31 (2):1945–60. doi:10.1021/acs.energyfuels.6b02659.
  • Somers, K. P., R. F. Cracknell, and H. J. Curran. 2019. A chemical kinetic interpretation of the octane appetite of modern gasoline engines, Proc. Proceedings of the Combustion Institute 37 (4):4857–64. doi:10.1016/j.proci.2018.05.123.
  • Stein, R. A., D. Polovina, and K. Roth. 2012. Effect of heat of vaporization, chemical octane, and sensitivity on knock limit for ethanol -gasoline blends. SAE 2012-01–1277.
  • Su, J., M. Xu, T. Li, Y. Gao, and J. Wang. 2014. Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine. Energy Convers. Manag. 78:65–73. doi:10.1016/j.enconman.2013.10.041.
  • Tao, M. Y., P. Zhao, D. DelVescovo, and H. W. Ge. 2018. Manifestation of octane rating, fuel sensitivity, and composition effects for gasoline surrogates under advanced compression ignition conditions. Combustion and Flame 192:238–49. doi:10.1016/j.combustflame.2018.02.015.
  • Truedsson, I., M. Tuner, B. Johansson, and W. Cannella. 2013. Pressure sensitivity of HCCI auto-ignition temperature for oxygenated reference fuels. SAE Technical Paper 2013-01-1669.
  • Wang, C. M., A. Janssen, A. Prakash, R. Cracknell, and H. M. Xu. 2017a. Splash blended ethanol in a spark ignition engine – Effect of RON, octane sensitivity and charge cooling. Fuel 196:21–31. doi:10.1016/j.fuel.2017.01.075.
  • Wang, C. M., A. Prakash, A. Aradi, R. Cracknell, and H. M. Xu. 2017b. Significance of RON and MON to a modern DISI engine. Fuel 209:172–83. doi:10.1016/j.fuel.2017.07.071.
  • Wang, C. M., S. Zeraati-Rezaei, L. M. Xiang, and H. M. Xu. 2017c. Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain. Applied Energy 191:603–19. doi:10.1016/j.apenergy.2017.01.081.
  • Wang, C. M., Y. F. Li, C. S. Xu, T. Badawy, A. Sahu, and C. Z. Jiang. 2019. Methanol as an octane booster for gasoline fuels. Fuel 248:76–84. doi:10.1016/j.fuel.2019.02.128.
  • Wang, F. 2015. Multidimensional Numerical simulation of flame propagation and knocking combustion process of direct injection supercharged gasoline engine. Beijing: Tsinghua University.
  • Westbrook, C., M. Mehl, W. Pitz, and M. Sjöberg. 2017. Chemical kinetics of octane sensitivity in a spark-ignition engine. Combustion and Flame 175:2–15. doi:10.1016/j.combustflame.2016.05.022.
  • Yao, C., C. Tang, A. Yao, H. Xu, and W. Pan. 2015. Research on pressure oscillation characteristics of auto-ignition of methanol mixture. Auto. Eng. 37:396–401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.