201
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of Forest Combustible Material on the Characteristics and Conditions of Ignition of Bio-coal Water Fuels

, ORCID Icon, ORCID Icon, &
Pages 576-596 | Received 20 Aug 2020, Accepted 11 Aug 2021, Published online: 05 Sep 2021

References

  • Ahn, K. Y., S. W. Baek, and C. E. Choi. 1994. Investigation of a Coal-Water Slurry Droplet Exposed to Hot Gas Stream. Combust. Sci. Technol. 97:429–47. doi:10.1080/00102209408935389.
  • Alekseenko, S. V., I. V. Kravchenko, and L. I. Maltsev (2012), Combustion technology for water-fuel mixtures, International Conference on Thermal Treatment Technologies and Hazardous Waste Combustors 2012; San Antonio, TX; United States; October 21–23, 2012.
  • Alexander, K. (2018), Camp Fire’s climate toll: Greenhouse gases equal about a week of California auto emissions, available at: https://sfchronicle.com/california-wildfires/article/California-wildfires-Staggering-toll-on-forests-13432888.php (Accessed November 2018).
  • Andreev, Y. A., A. Y. Andreev, P. V. Mikhaylov, V. G. Pautyak, and V. S. Komorovski. 2015. Stock assessment of forest combustible materials in the state forest inventory. Proc. St. Petersburg Sci. Res. Inst. Aerial Econ. 1:39–45.
  • Arango, T. (2018), A ‘Perfectly Imperfect’ Life: The Victims of the California Wildfires, available at: https://nytimes.com/2018/11/14/us/wildfire-victims.html (Accessed November 2018).
  • Arteaga-Pérez, L. E., M. Vega, L. C. Rodríguez, M. Flores, C. A. Zaror, and C. L. Yannay. 2015. Life-Cycle Assessment of coal–biomass based electricity in Chile: Focus on using raw vs torrefied wood. Energy Sustain. Dev. 29:81–90. doi:10.1016/j.esd.2015.10.004.
  • Badour, C., A. Gilbert, C. Xu, H. Li, Y. Shao, G. Tourigny, and F. Preto. 2012. Combustion and air emissions from co-firing a wood biomass, a Canadian peat and a Canadian lignite coal in a bubbling fluidised bed combustor. Can. J. Chem. Eng. 90:1170–77. doi:10.1002/cjce.20620.
  • Barnes, P. J. 1993. Nitric oxide and airways. Eur. Respir. J. 6:163–65.
  • Bhui, B., and P. Vairakannu. 2019. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology. J. Environ. Manage. 231:1241–56. doi:10.1016/j.jenvman.2018.10.092.
  • Bhuiyana, A., A. Blicblau, A. SadrulIslam, and J. Naser. 2018. A review on thermo-chemical characteristics of coal/biomass co-firing in industrial furnace. J. Energy Instit. 91l:1–18. doi:10.1016/j.joei.2016.10.006.
  • Caballero-Gallardo, K., and J. Olivero-Verbel. 2016. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health. Toxicol. Appl. Pharmacol. 294:11–20. doi:10.1016/j.taap.2016.01.009.
  • Chen, R., M. Wilson, Y. K. Leong, P. Bryant, H. Yang, and D. K. Zhang. 2011. Preparation and rheology of biochar, lignite char and coal slurry fuels. Fuel 90:1689–95. doi:10.1016/j.fuel.2010.10.041.
  • Chernetskiy, M., K. Vershinina, and P. Strizhak. 2018. Computational modeling of the combustion of coal water slurries containing petrochemicals. Fuel 220:109–19. doi:10.1016/j.fuel.2018.02.006.
  • Colgan, J. D. 2014. Oil, Domestic Politics, and International Conflict. Energy Res. Social Sci. 1:198–205. doi:10.1016/j.erss.2014.03.005.
  • Cordell, R. L., M. Mazet, C. Dechoux, S. M. L. Hama, J. Staelens, J. Hofman, C. Stroobants, E. Roekens, G. P. A. Kos, E. P. Weijers, et al. 2016. Evaluation of biomass burning across North West Europe and its impact on air quality. Atmos. Environ. 141:276–86. doi:10.1016/j.atmosenv.2016.06.065.
  • Das, R. D., P. K. Parhi, and M. K. Padhy. 2018. Characterization, stabilization, and study of mechanism of coal-water slurry using Sapindous Mukorossi as an additive. Energy Sources Part A 40:1–8.
  • Dorokhov, V., G. Kuznetsov, G. Nyashina, and P. Strizhak. 2021. Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals. Environ. Pollut. 285:117390. doi:10.1016/j.envpol.2021.117390.
  • Eriksson, A., L. Eliasson, L. Sikanen, P. A. Hansson, and R. Jirjis. 2017. Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS). Appl. Energy 188:420–30. doi:10.1016/j.apenergy.2016.12.018.
  • Esen, V., and B. Oral. 2016. Natural gas reserve/production ratio in Russia, Iran, Qatar and Turkmenistan: A political and economic perspective. Energy Policy 93:101–09. doi:10.1016/j.enpol.2016.02.037.
  • Feng, P., L. Hao, C. Huo, Z. Wang, W. Lin, and W. Song. 2014. Rheological behavior of coal bio-oil slurries. Energy 66:744–49. doi:10.1016/j.energy.2014.01.097.
  • Feng, P., W. Lin, P. A. Jensen, W. Song, L. Hao, K. Raffelt, and K. Dam-Johansen. 2016. Entrained flow gasification of coal/bio-oil slurries. Energy 111:793–802. doi:10.1016/j.energy.2016.05.115.
  • Gielen, D., F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini. 2019. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 24:38–50. doi:10.1016/j.esr.2019.01.006.
  • Glushkov, D. O., D. P. Shabardin, P. A. Strizhak, and K. Y. Vershinina. 2016a. Influence of organic coal-water fuel composition on the characteristics of sustainable droplet ignition. Fuel Process. Technol. 143:60–68. doi:10.1016/j.fuproc.2015.11.014.
  • Glushkov, D. O., S. V. Syrodoy, A. V. Zhakharevich, and P. A. Strizhak. 2016b. Ignition of promising coal-water slurry containing petrochemicals: Analysis of key aspects. Fuel Process. Technol. 148:224–35. doi:10.1016/j.fuproc.2016.03.008.
  • Gosset W/ S. 1908. The probable error of a mean. Biometrika 6: 1–25. doi:10.2307/2331554.
  • Grigoli, F., A. Herman, and A. Swiston. 2019. A crude shock: Explaining the short-run impact of the 2014–16 oil price decline across exporters. Energy Econ. 78:481–93. doi:10.1016/j.eneco.2018.11.025.
  • Guerrero-Escobar, S., G. Hernandez-del-Valle, and M. Hernandez-Vega. 2018. Do heterogeneous countries respond differently to oil price shocks? J. Commodity Markets 2018-09:1–29.
  • Gunung Oh, G., H. W. Ra, S. M. Yoon, T. Y. Mun, M. W. Seo, J. G. Lee, and S. J. Yoon. 2019. Syngas production through gasification of coal water mixture and power generation on dual-fuel diesel engine. J. Energy Instit. 92:265–74. doi:10.1016/j.joei.2018.01.009.
  • Jawadi, F., and Z. Ftiti. 2019. Oil price collapse and challenges to economic transformation of Saudi Arabia: A time-series analysis. Energy Econ. 80:12–19. doi:10.1016/j.eneco.2018.12.003.
  • Jianzhong, L., W. Ruikun, X. Jianfei, Z. Junhu, and C. Kefa. 2017. Pilot-scale investigation on slurrying, combustion, and slagging characteristics of coal slurry fuel prepared using industrial wasteliquid. Appl. Energy 115:309–19. doi:10.1016/j.apenergy.2013.11.026.
  • Jordão, A. M., J. M. Ricardo-da-silva, and O. Laureano. 2006. Volatile composition analysis by solid-phase microextraction applied to oak wood used in cooperage (Quercus pyrenaica and Quercus petraea): Effect of botanical species and toasting process. J. Wood Sci. 52:514–21. doi:10.1007/s10086-005-0796-6.
  • Kurgankina, M. A., G. S. Nyashina, and P. A. Strizhak. 2019. Advantages of switching coal-burning power plants to coal-water slurries containing petrochemicals. Appl. Therm. Eng. 147:998–1008. doi:10.1016/j.applthermaleng.2018.10.133.
  • Kuznetsov, G. V., D. Y. Malyshev, Z. A. Kostoreva, S. V. Syrodoy, and N. Y. Gutareva. 2020a. The ignition of the bio coal-water fuel particles based on coals of different degree metamorphism. Energy 201:117701. doi:10.1016/j.energy.2020.117701.
  • Kuznetsov, G. V., S. V. Syrodoy, D. Y. Malyshev, N. Y. Gutareva, and N. A. Nigay. 2020b. Theoretical justification of utilization of forest waste by incineration in a composition of bio-water-coal suspensions. Ignition stage. Appl. Therm. Eng. 170:115034. doi:10.1016/j.applthermaleng.2020.115034.
  • Kuznetsov, G. V., V. V. Salomatov, and S. V. Syrodoy. 2015. Numerical simulation of ignition of particles of a coal–water fuel. Combust. Explosion Shock Waves 51:409–15. doi:10.1134/S0010508215040024.
  • Li, P., D. Yang, X. Qiu, and W. Feng. 2015. Study on Enhancing the Slurry Performance of Coal–Water Slurry Prepared with Low-Rank Coal. J. Dispers. Sci. Technol. 36:1247–56. doi:10.1080/01932691.2014.971367.
  • Liu, R. H., and J. H. Hotchkiss. 1995. Potential genotoxicity of chronically elevated nitric oxide: A review. Mutat. Res. Rev. Genet. Toxicol. 339:73–89. doi:10.1016/0165-1110(95)90004-7.
  • Malishev, D. Y., S. V. Syrodoy, and Y. V. Shchegolihina. 2019. Changing the characteristics of the ignition process of hydrocarbon fuels when used in the third component of charcoal. AIP Conf. Proc. 2135:020035.
  • Masto, R. E., J. George, T. K. Rout, and L. C. Ram. 2017. Multi element exposure risk from soil and dust in a coal industrial area. J. Geochem. Explor. 176:100–07. doi:10.1016/j.gexplo.2015.12.009.
  • Miller, B. G. 2017a. Anatomy of a Coal-Fired Power Plan. In Clean Coal Engineering Technology, Second Edition, 219–50.
  • Miller, B. G. 2017b. Clean Coal Technologies for Advanced Power Generation. In Clean Coal Engineering Technology, Second Edition, 252–300.
  • Mrad, H., S. Alix, S. Migneault, A. Koubaa, and P. Perré. 2018. Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement 115:197–203. doi:10.1016/j.measurement.2017.10.011.
  • Muhumuza, R., A. Zacharopoulos, J. D. Mondol, M. Smyth, and A. Pugsley. 2018. Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries. Renew. Sustain. Energy Rev. 97:90–102. doi:10.1016/j.rser.2018.08.021.
  • Munawer, M. E. 2018. Human health and environmental impacts of coal combustion and post-combustion wastes. J. Sustain. Mining 17:87–96. doi:10.1016/j.jsm.2017.12.007.
  • Nassar, I. A., and M. M. Abdella. 2018. Impact of replacing thermal power plants by renewable energy on the power system. Therm. Sci. Eng. Progress 5:506–15. doi:10.1016/j.tsep.2018.02.002.
  • Newnham, R. 2011. Oil, carrots, and sticks: Russia’s energy resources as a foreign policy tool. J. Eurasian Stud. 2:134–43. doi:10.1016/j.euras.2011.03.004.
  • Nyashina, G. S., G. V. Kuznetsov, and P. A. Strizhak. 2020. Effects of plant additives on the concentration of sulfur and nitrogen oxides in the combustion products of coal-water slurries containing petrochemicals. Environ. Pollut. 258:113682. doi:10.1016/j.envpol.2019.113682.
  • Nyashina, G. S., and P. A. Strizhak. 2018. The influence of liquid plant additives on the anthropogenic gas emissions from the combustion of coal-water slurries. Environ. Pollut. 242:31–41. doi:10.1016/j.envpol.2018.06.072.
  • Oliveira, M. L. S., D. Pinto, B. F. Tutikian, K. Boit, B. K. Saikia, and L. F. O. Silva. 2019. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mines. J. Clean. Prod. 215:1140–48. doi:10.1016/j.jclepro.2019.01.169.
  • Olovsson, C. 2019. Oil prices in a general equilibrium model with precautionary demand for oil. Rev Econ Dyn 32:1–17. doi:10.1016/j.red.2018.11.003.
  • Pronobis, M. 2020. Environmentally Oriented Modernization of Power Boilers, 344. Elsevier.
  • Salomatov, V., G. Kuznetsov, S. Syrodoy, and N. Gutareva. 2020. Mathematical and physical modeling of the coal–water fuel particle ignition with a liquid film on the surface. Energy Rep. 6:628–43. doi:10.1016/j.egyr.2020.02.006.
  • Salomatov, V. V., G. V. Kuznetsov, S. V. Syrodoy, and N. Y. Gutareva. 2016. Ignition of coal-water fuel particles under the conditions of intense heat. Appl. Therm. Eng. 106:561–69. doi:10.1016/j.applthermaleng.2016.06.001.
  • Salomatov, V. V., G. V. Kuznetsov, S. V. Syrodoy, and N. Y. Gutareva. 2019a. Conditions of the Water–Coal Fuel Drop Dispersion at Their Ignition in the Conditions of High-Temperature Heating. Combust. Sci. Technol. 191:2162–84. doi:10.1080/00102202.2018.1549038.
  • Salomatov, V. V., G. V. Kuznetsov, S. V. Syrodoy, and N., . Y. Gutareva. 2019b. Effect of high-temperature gas flow on ignition of the water-coal fuel particles. Combust. Flame 203:375–85. doi:10.1016/j.combustflame.2019.02.025.
  • Sghari, M. B. A., and S. Hammami. 2016. Energy, pollution, and economic development in Tunisia. Energy Rep. 2:35–39. doi:10.1016/j.egyr.2016.01.001.
  • Sh., A., T. Sowlati, D. G. Siller-Benitez, and D. Roeser. 2019a. Impact of inventory management on demand fulfilment, cost and emission of forest-based biomass supply chains using simulation modeling. Biosyst. Eng. 178:184–99. doi:10.1016/j.biosystemseng.2018.11.015.
  • Sh., G., L. Heath, D. Pisaniello, M. Logan, and C. Baxter. 2019b. Skin permeation of oxides of nitrogen and sulfur from short-term exposure scenarios relevant to hazardous material incidents. Sci. Total Environ. 665:937–43. doi:10.1016/j.scitotenv.2019.02.205.
  • Shaffer, B. 2013. Natural gas supply stability and foreign policy. Energy Policy 56:114–25. doi:10.1016/j.enpol.2012.11.035.
  • Shibani, K. J., and H. Puppala. 2017. Prospects of renewable energy sources in India: Prioritization of alternative sources in terms of Energy Index. Energy 127:116–27. doi:10.1016/j.energy.2017.03.110.
  • Shuping, Y., L. Hao, S. Li, and W. Song. 2019. The influence of water content in rice husk bio-oil on the rheological properties of coal bio-oil slurries. Energy 189:116307. doi:10.1016/j.energy.2019.116307.
  • Soo, S. L., and L. Ballard Department of Mechanical and Industrial Engineering University of Illinois at Urbana-Chanipaign Urbana, Illinois. Research Applied to National Needs (RANN) (Grant No. GI, 35821 (A)-l) National Science Foundation Washington, D.C. 1975
  • Syrodoy, S. V., G. V. Kuznetsov, A. V. Zhakharevich, N. Y. Gutareva, and V. V. Salomatov. 2017. The influence of the structure heterogeneity on the characteristics and conditions of the coal–water fuel particles ignition in high temperature environment. Combust. Flame 180:196–206. doi:10.1016/j.combustflame.2017.02.003.
  • Syrodoy, S. V., G. V. Kuznetsov, N. Y. Gutareva, and M. V. Purin. 2020. Ignition of bio-water-coal fuel drops. Energy 203:117808. doi:10.1016/j.energy.2020.117808.
  • Tavangar, S., S. H. Hashemabadi, and A. Saberimoghadam. 2015. CFD simulation for secondary breakup of coal–water slurry drops using OpenFOAM. Fuel Process. Technol. 132:153–63. doi:10.1016/j.fuproc.2014.12.037.
  • Tiwari, A. K., Z. Mukherjee, R. Gupta, and M. Balcilar. 2019. A wavelet analysis of the relationship between oil and natural gas prices. Resour. Policy 60:118–24. doi:10.1016/j.resourpol.2018.11.020.
  • Tong, X., G. Zhang, Z. Wang, Z. Wen, Z. Tian, H. Wang, F. Ma, and Y. Wu. 2018. Distribution and potential of global oil and gas resources. Pet. Explor. Dev. 454:779–89. doi:10.1016/S1876-3804(18)30081-8.
  • Towler, B. F. 2014. Coal and Clean Coal Technologies. Future Energy.
  • Vassilev, S., C. G. Vassileva, and V. S. Vassilev. 2015. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 158:330–50. doi:10.1016/j.fuel.2015.05.050.
  • Vershinina, K., D. Shabardin, and P. Strizhak. 2019. Burnout rates of fuel slurries containing petrochemicals, coals and coal processing waste. Power Technol. 343:204–14. doi:10.1016/j.powtec.2018.11.052.
  • Vershinina, K. Y., D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak. 2016. Differences in the ignition characteristics of coal–water slurries and composite liquid fuel. Solid Fuel Chem. 50:88–101. doi:10.3103/S0361521916020117.
  • Vershinina, K. Y., G. V. Kuznetsov, and P. A. Strizhak. 2017. Sawdust as ignition intensifier of coal water slurries containing petrochemicals. Energy 140:69–77. doi:10.1016/j.energy.2017.08.108.
  • Xu, X., Y. Liu, F. Zhang, W. Di, and Y. Zhang. 2017. Clean coal technologies in China based on methanol platform. Catal. Today 298:61–68. doi:10.1016/j.cattod.2017.05.070.
  • Xue, M., M. Su, L. Dong, Z. Shang, and X. Cai. 2009. An investigation on characterizing dense coal-water slurry with ultrasound: Theoretical and experimental method. Chem. Eng. Commun. 197:169–79. doi:10.1080/00986440902936075.
  • Ya., Z., B. Yu., Y. Wu, X. Wu, H. Zh., J. Zhou, and K. Cen. 2014. Flow behavior of high-temperature flue gas in the heat transfer chamber of a pilot-scale coal-water slurry combustion furnace. Particuology 17:114–24. doi:10.1016/j.partic.2013.07.007.
  • Yang, S., Q. Chen, Z. Liu, Y. Wang, Z. Tang, and Y. Sun. 2018. Performance analysis of the wind energy integrated with a natural-gas-to-methanol process. Energy Convers. Manage. 173:735–42. doi:10.1016/j.enconman.2018.07.068.
  • Yankovsky, S. A., G. V. Kuznetsov, and A. V. Zenkov. 2018. Applying composite fuels based on coal and finely dispersed wood in heat power engineering. J. Phys. 1128. available at https://iopscience.iop.org/article/10.1088/1742–6596/1128/1/012064.
  • Yin, L., and J. Feng. 2019. Oil market uncertainty and international business cycle dynamics. Energy Econ. 81:728–40. doi:10.1016/j.eneco.2019.05.013.
  • Zeldovich, Y. B., G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze. 1980. The mathematical theory of combustion and explosion. Moscow: Nauka.
  • Zh., X., Q. Guo, G. Ya., Y. Wang, and G. Yu. 2018. In-situ atomization and flame characteristics of coal water slurry in an impinging entrained-flow gasifier. Chem. Eng. Sci. 190:248–59. doi:10.1016/j.ces.2018.06.039.
  • Zhao, S., and A. Alexandroff. 2019. Current and future struggles to eliminate coal. Energy Policy 129:511–20. doi:10.1016/j.enpol.2019.02.031.
  • Zhu, M., Z. Zhang, Y. Zhang, P. Liu, and D. Zhang. 2017. An experimental investigation into the ignition and combustion characteristics of single droplets of biochar water slurry fuels in air. Appl. Energy 185:2160–67. doi:10.1016/j.apenergy.2015.11.087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.