588
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Ignition Mechanisms of Reactive Nanocomposite Powders Combining Al, B, and Si as Fuels with Metal Fluorides as Oxidizers

ORCID Icon, ORCID Icon & ORCID Icon
Pages 597-618 | Received 29 Apr 2021, Accepted 12 Aug 2021, Published online: 19 Aug 2021

References

  • Aurivillius, B., C. Brosset, T. Ledaal, and H. M. Seip. 1964. The crystal structure of bismuth oxide fluoride II. A refinement of the previously published structure. Acta Chem. Scand. 18:1823–30. doi:10.3891/acta.chem.scand.18-1823.
  • Braun, G., G. Boden, K. Henkel, and H. Rossbach. 2005. Thermal analysis of the direct nitridation of silicon to Si3N4. J. Therm. Anal. Calorim.33 (2):479. doi:10.1007/bf01913926.
  • Cabrera, N. F. M. N., and N. F. Mott. 1949. Theory of the oxidation of metals. Rep. Prog. Phys. 12 (1):163–84. doi:10.1088/0034-4885/12/1/308.
  • Cahn, R. W. 1991. Binary alloy phase diagrams–second edition. T. B. Massalski, Editor-in-Chief; H. Okamoto, P. R. Subramanian, L. Kacprzak, Editors. ASM International, Materials Park, Ohio, USA. December 1990. xxii, 3589 pp., 3 vol., hard- back. $995.00 the set. Adv. Mater. 3 (12):628–29. doi:10.1002/adma.19910031215.
  • Cui, Z.-X., Y.-N. Feng, Y.-Q. Xue, J. Zhang, R. Zhang, J. Hao, and J.-Y. Liu. 2018. Shape dependence of thermodynamics of adsorption on nanoparticles: A theoretical and experimental study. Phys. Chem. Chem. Phys. 20 (47):29959–68. doi:10.1039/C8CP04895A.
  • Deal, B. E., and A. S. Grove. 1965. General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 36 (12):3770–78. doi:10.1063/1.1713945.
  • Dreizin, E. L., D. G. Keil, W. Felder, and E. P. Vicenzi. 1999. Phase changes in boron ignition and combustion. Combust. Flame 119 (3):272–90. doi:10.1016/s0010-2180(99)00066-8.
  • Dreizin, E. L., and M. Schoenitz. 2009. Nano-composite energetic powders prepared by arrested reactive milling. In US Patent 7,524,355
  • Galfetti, L., L. T. DeLuca, F. Severini, G. Colombo, L. Meda, and G. Marra. 2007. Pre and post-burning analysis of nano-aluminized solid rocket propellants. Aerosp. Sci. Technol. 11 (1):26–32. doi:10.1016/j.ast.2006.08.005.
  • Gany, A., and Y. M. Timnat. 1993. Advantages and drawbacks of boron-fueled propulsion. Acta Astronaut. 29 (3):181–87. doi:10.1016/0094-5765(93)90047-Z.
  • Gulbransen, E. A., and K. F. Andrew. 1951. The kinetics of the oxidation of Cobalt. J. Electrochem. Soc. 98 (6):241. doi:10.1149/1.2778139.
  • Gurevich, M. A., K. I. Lapkina, and E. S. Ozerov. 1970. Limiting conditions for ignition of an aluminum particle(Limiting temperature and size conditions for aluminum particle ignition in mixtures of oxygen with argon and nitrogen). Fiz. Goreniya Vzryva 6:172–76.
  • Ishida, K., T. Nishizawa, and M. E. Schlesinger. 1991. The Co-Si (Cobalt-Silicon) system. J. Phase Equilib. 12 (5):578–86. doi:10.1007/BF02645074.
  • King, M. K. 1973. Boron particle ignition in hot gas streams. Combust. Sci. Technol. 8 (5–6):255–73. doi:10.1080/00102207308946648.
  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. 29 (11):1702–06. doi:10.1021/ac60131a045.
  • Laval, J. P., J. C. Champarnaud-Mesjard, A. Britel, and A. Mikou. 1999. Bi(F, O)2.45: An anion-excess fluorite defect structure deriving from rhombohedral LnFO type. J. Solid State Chem. 146 (1):51–59. doi:10.1006/jssc.1999.8307.
  • Laval, J. P., J. C. Champarnaud-Mesjard, B. Frit, A. Britel, and A. Mikou. 1994. Bi 7 F 11 O 5: A new ordered anion-excess fluorite-related structure with columnar clusters. Eur. J. Solid State Inorg. Chem 31:943–56.
  • Liu, X., J. Gonzales, M. Schoenitz, and E. L. Dreizin. 2017. Effect of purity and surface modification on stability and oxidation kinetics of boron powders. Thermochim Acta 652:17–23. doi:10.1016/j.tca.2017.03.007.
  • Maček, A. 1973. Combustion of boron particles: Experiment and theory. Symp. (Int) Combust. 14 (1):1401–11. doi:10.1016/S0082-0784(73)80125-0.
  • Mal, I., R. K. Mahato, V. Tiwari, and D. P. Samajdar. 2021. First principle studies on the structural, thermodynamic and optoelectronic properties of Boron Bismuth: A promising candidate for mid-infrared optoelectronic applications. Mater. Sci. Semicond. Process. 121:105352. doi:10.1016/j.mssp.2020.105352.
  • McAlister, A. J. 1989. The Al-Co (Aluminum-Cobalt) system. Bull. Alloy. Phase. Diagr. 10 (6):646–50. doi:10.1007/BF02877635.
  • Monk, I., R. Williams, X. Liu, and E. L. Dreizin. 2015. Electro-static discharge ignition of monolayers of nanocomposite thermite powders prepared by arrested reactive milling. Combust. Sci. Technol. 187 (8):1276–94. doi:10.1080/00102202.2015.1035373.
  • Morell, A., B. Tanguy, and J. Portier. 1971. Le système Bi2O3-BiF3. Bull. Soc. Chim. Fr. 7:2502–04.
  • Nandi, A. K., M. Ghosh, S. Newale, A. Jadhav, H. Prasanth, and R. Pandey. 2012. Formation of boric acid by surface oxidation of amorphous boron powder: Characterization and quantitative estimation. Cent. Eur. J. Energetic Mater. 9:387–98.
  • Nash, P., and A. Nash. 1987. The Ni−Si (Nickel-Silicon) system. Bull. Alloy. Phase. Diagr. 8 (1):6–14. doi:10.1007/BF02868885.
  • Natan, B., and A. Gany. 1991. Ignition and combustion of boron particles in the flowfield of a solid fuel ramjet. J. Propul. Power 7 (1):37–43. doi:10.2514/3.23291.
  • Okamoto, H., M. E. Schlesinger, and E. M. Mueller. 2016. B (Boron) binary alloy phase diagrams. In Alloy phase diagrams, ed. H. Okamoto, M. E. Schlesinger, and E. M. Mueller, ASM International. Doi:10.31399/asm.hb.v03.a0006147
  • Okamoto, H. 2014. Supplemental literature review of binary phase diagrams: Al-Bi, Al-Dy, Al-Gd, Al-Tb, C-Mn, Co-Ga, Cr-Hf, Cr-Na, Er-H, Er-Zr, H-Zr, and Ni-Pb. J. Phase Equilibria Diffus. 35 (3):343–54. doi:10.1007/s11669-014-0300-3.
  • Olesinski, R. W., and G. J. Abbaschian. 1985. The Bi−Si (Bismuth-Silicon) system. Bull. Alloy. Phase. Diagr. 6 (4):359–61. doi:10.1007/BF02880522.
  • Pettit, F. S. 1967. Oxidation mechanisms for nickel-aluminum alloys at temperatures between 900°C and 1300°C. Trans. Metall. Soc.AIME. 239:1296–305.
  • Ruff, O., and E. Ascher. 1929. Die Fluoride der VIII. Gruppe des periodischen Systems. Z. Anorg. Allg. Chem. 183 (1):193–213. doi:10.1002/zaac.19291830113.
  • Ryss, I. G. 1956a. Chemistry of fluorine and its inorganic compounds. Part I. U.S.S.R, Oak Ridge, Tennessee.
  • Ryss, I. G. 1956b. Chemistry of fluorine and its inorganic compounds. Part II. U.S.S.R, Oak Ridge, Tennessee.
  • Starik, A. M., A. M. Savel’ev, and N. S. Titova. 2015. Specific features of ignition and combustion of composite fuels containing aluminum nanoparticles (Review). Combust. Explos. Shock Waves 51 (2):197–222. doi:10.1134/S0010508215020057.
  • Sundaram, D. S., V. Yang, and V. E. Zarko. 2015. Combustion of nano aluminum particles (Review). Combustion, Explosion, and Shock Waves 51 (2):173–96. doi:10.1134/S0010508215020045.
  • Trunov, M., M. Schoenitz, X. Zhu, and E. Dreizin. 2005. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust. Flame 140 (4):310–18. doi:10.1016/j.combustflame.2004.10.010.
  • Valluri, S. K., D. Bushiri, M. Schoenitz, and E. Dreizin. 2019. Fuel-rich aluminum–nickel fluoride reactive composites. Combust. Flame 210:439–53. doi:10.1016/j.combustflame.2019.09.012.
  • Valluri, S. K., I. Monk, M. Schoenitz, and E. Dreizin. 2017. Fuel-rich aluminum–metal fluoride thermites. Int. J. Energetic Mater. Chem. Propul. 16 (1):81–101. doi:10.1615/IntJEnergeticMaterialsChemProp.2018021842.
  • Valluri, S. K., M. Schoenitz, and E. Dreizin. 2020. Preparation and characterization of silicon-metal fluoride reactive composites. Nanomaterials 10 (12):1–23. doi:10.3390/nano10122367.
  • Valluri, S. K., M. Schoenitz, and E. Dreizin. 2019. Boron-metal fluoride reactive composites: Preparation and reactions leading to their ignition. J. Propul. Power 35 (4):802–10. doi:10.2514/1.B37306.
  • Vummidi, S. L., Y. Aly, M. Schoenitz, and E. L. Dreizin. 2010. Characterization of fine nickel-coated aluminum powder as potential fuel additive. J. Propul. Power 26 (3):454–60. doi:10.2514/1.47092.
  • Ward, T. S., M. A. Trunov, M. Schoenitz, and E. L. Dreizin. 2006. Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fuels. Int J Heat Mass Transf 49 (25–26):4943–54. doi:10.1016/j.ijheatmasstransfer.2006.05.025.
  • Williams, R. A., J. V. Patel, and E. L. Dreizin. 2014. Ignition of fully dense nanocomposite thermite powders by an electric spark. J. Propul. Power 30 (3):765–74. doi:10.2514/1.B35073.
  • Zhu, P. J., C. M. Li, and C. T. Liu. 2002. Reaction mechanism of combustion synthesis of NiAl. Mater. Sci. Eng. A 329-331:57–68. doi:10.1016/S0921-5093(01)01549-0.
  • Zohari, N., M. H. Keshavarz, and S. A. Seyedsadjadi. 2013. The advantages and shortcomings of using nano-sized energetic materials. Cent. Eur. J. Energetic Mater. 10 (1):135-147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.