276
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Growth of Polycyclic Aromatic Hydrocarbons by C2H2 Mediated by Five-membered Rings: Acenaphthylene Conversion to Phenanthrene

&
Pages 619-645 | Received 06 Jan 2021, Accepted 12 Aug 2021, Published online: 21 Aug 2021

References

  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combustion and Flame 121:122–36. doi:10.1016/S0010-2180(99)00135-2.
  • Baroncelli, M., Q. Mao, S. Galle, N. Hansen, and H. Pitsch. 2020. Role of ring-enlargement reactions in the formation of aromatic hydrocarbons. Physical Chemistry Chemical Physics 22:4699–714. doi:10.1039/C9CP05854K.
  • Bauschlicher, C. W. 2015. The growth of phenanthrene from naphthalene by C2H2 additions. Mol Phys 113:1834–38. doi:10.1080/00268976.2015.1017016.
  • Blanquart, G., P. Pepiot-Desjardins, and H. Pitsch. 2009. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combustion and Flame 156:588–607. doi:10.1016/j.combustflame.2008.12.007.
  • Camacho, J., A. V. Singh, W. Wang, R. Shan, E. K. Y. Yapp, D. Chen, M. Kraft, and H. Wang 2017. Soot particle size distributions in premixed stretch-stabilized flat ethylene–oxygen–argon flames. Proceedings of the Combustion Institute, 36, 1001–09.
  • Canneaux, S., F. Bohr, and E. Henon. 2014. KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results†. J. Comput. Chem. 35:82–93. doi:10.1002/jcc.23470.
  • Carissan, Y., and W. Klopper. 2010. Hydrogen abstraction from biphenyl, acenaphthylene, naphthalene and phenanthrene by atomic hydrogen and methyl radical: DFT and G3(MP2)-RAD data. Journal of Molecular Structure: THEOCHEM 940:115–18. doi:10.1016/j.theochem.2009.10.017.
  • Castaldi, M. J., N. M. Marinov, C. F. Melius, J. Huang, S. M. Senkan, W. J. Pit, and C. K. Westbrook 1996. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symposium (International) on Combustion, 26, 693–702.
  • Cavallotti, C., S. Mancarella, R. Rota, and S. Carrà. 2007. Conversion of C5 into C6 Cyclic Species through the Formation of C7 Intermediates. J Phys Chem A 111:3959–69. doi:10.1021/jp067117f.
  • Chu, T.-C., M. C. Smith, J. Yang, M. Liu, and W. H. Green. 2020. Theoretical study on the HACA chemistry of naphthalenyl radicals and acetylene: The formation of C12H8, C14H8, and C14H10 species. International Journal of Chemical Kinetics 52 (11):752–68. doi:10.1002/kin.21397.
  • Frenklach, M., and A. M. Mebel. 2020. On the mechanism of soot nucleation. Physical Chemistry Chemical Physics 22 (9):5314–31. doi:10.1039/D0CP00116C.
  • Frenklach, M., and J. Ping. 2004. On the role of surface migration in the growth and structure of graphene layers. Carbon 42 (7):1209–12. doi:10.1016/j.carbon.2004.01.025.
  • Frenklach, M., C. A. Schuetz, and J. Ping 2005. Migration mechanism of aromatic-edge growth. Proceedings of the Combustion Institute, 30, 1389–96.
  • Frenklach, M., R. I. Singh, and A. M. Mebel 2019. On the low-temperature limit of HACA. Proceedings of the Combustion Institute, 37, 969–76.
  • Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al. 2009. Gaussian 09, Revision D.01. Wallingford CT.
  • Georganta, E., R. Rahman, A. Raj, and S. Sinha. 2017. Growth of polycyclic aromatic hydrocarbons (PAHs) by methyl radicals: Pyrene formation from phenanthrene. Combustion and Flame 185:129–41. doi:10.1016/j.combustflame.2017.07.011.
  • Hansen, N., M. Schenk, K. Moshammer, and K. Kohse-Höinghaus. 2017. Investigating repetitive reaction pathways for the formation of polycyclic aromatic hydrocarbons in combustion processes. Combustion and Flame 180:250–61. doi:10.1016/j.combustflame.2016.09.013.
  • Harding, L. B., Y. Georgievskii, and S. J. Klippenstein. 2005. Predictive Theory for Hydrogen Atom−Hydrocarbon Radical Association Kinetics. J Phys Chem A 109 (21):4646–56. doi:10.1021/jp0508608.
  • Henon, E., F. Bohr, N. Sokolowski-Gomez, and F. Caralp. 2003. Degradation of three oxygenated alkoxy radicals of atmospheric interest: HOCH2O˙, CH3OCH2O, CH3OCH2OCH2O. RRKM theoretical study of the β-C–H bond scission and the 1,6-isomerisation kinetics. Phys. Chem. Chem. Phys. 5 (24):5431–37. doi:10.1039/B313251J.
  • Inal, F., and S. M. Senkan. 2002. Effects of equivalence ratio on species and soot concentrations in premixed n-heptane flames. Combustion and Flame 131 (1–2):16–28. doi:10.1016/S0010-2180(02)00388-7.
  • Johansson, K. O., M. P. Head-Gordon, P. E. Schrader, K. R. Wilson, and H. A. Michelsen. 2018. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361 (6406):997–1000. doi:10.1126/science.aat3417.
  • Kaiser, J. 2005. EPIDEMIOLOGY: Mounting Evidence Indicts Fine-Particle Pollution. Science 307 (5717):1858a–1861a. doi:10.1126/science.307.5717.1858a.
  • Kislov, V. V., N. I. Islamova, A. M. Kolker, S. H. Lin, and A. M. Mebel. 2005. Hydrogen Abstraction Acetylene Addition and Diels−Alder Mechanisms of PAH Formation: A Detailed Study Using First Principles Calculations. J Chem Theory Comput 1 (5):908–24. doi:10.1021/ct0500491.
  • Kislov, V. V., A. I. Sadovnikov, and A. M. Mebel. 2013. Formation Mechanism of Polycyclic Aromatic Hydrocarbons beyond the Second Aromatic Ring. J Phys Chem A 117 (23):4794–816. doi:10.1021/jp402481y.
  • Landera, A., R. I. Kaiser, and A. M. Mebel. 2011. Addition of one and two units of C2H to styrene: A theoretical study of the C10H9 and C12H9 systems and implications toward growth of polycyclic aromatic hydrocarbons at low temperatures. J. Chem. Phys. 134 (2):024302. doi:10.1063/1.3526957.
  • Lapuerta, M., J. Rodríguez–Fernández, and J. Sánchez-Valdepeñas. 2020. Soot reactivity analysis and implications on diesel filter regeneration. Progress in Energy and Combustion Science 78:100833.
  • Lifshitz, A., C. Tamburu, and F. Dubnikova. 2008. Reactions of 1-Naphthyl Radicals with Ethylene. Single Pulse Shock Tube Experiments, Quantum Chemical, Transition State Theory, and Multiwell Calculations. J Phys Chem A 112 (5):925–33. doi:10.1021/jp077289s.
  • Liu, P., Z. Li, A. Bennett, H. Lin, S. M. Sarathy, and W. L. Roberts. 2019a. The site effect on PAHs formation in HACA-based mass growth process. Combustion and Flame 199:54–68. doi:10.1016/j.combustflame.2018.10.010.
  • Liu, P., Z. Li, and W. L. Roberts. 2021. Growth network of PAH with 5-membered ring: Case study with acenaphthylene molecule. Combustion and Flame 230:111449. doi:10.1016/j.combustflame.2021.111449.
  • Liu, P., H. Lin, Y. Yang, C. Shao, B. Guan, and Z. Huang. 2015. Investigating the Role of CH2 Radicals in the HACA Mechanism. J Phys Chem A 119 (13):3261–68. doi:10.1021/jp5124162.
  • Liu, P., Y. Zhang, Z. Li, A. Bennett, H. Lin, S. M. Sarathy, and W. L. Roberts. 2019b. Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition. Combustion and Flame 202:276–91. doi:10.1016/j.combustflame.2019.01.023.
  • Long, A. E., S. S. Merchant, A. G. Vandeputte, -H.-H. Carstensen, A. J. Vervust, G. B. Marin, K. M. Van Geem, and W. H. Green. 2018. Pressure dependent kinetic analysis of pathways to naphthalene from cyclopentadienyl recombination. Combustion and Flame 187:247–56. doi:10.1016/j.combustflame.2017.09.008.
  • Lu, M., and J. A. Mulholland. 2001. Aromatic hydrocarbon growth from indene. Chemosphere 42 (5–7):625–33. doi:10.1016/S0045-6535(00)00236-8.
  • Marchal, C., J.-L. Delfau, C. Vovelle, G. Moréac, C. Mounaı¨M-Rousselle, and F. Mauss 2009. Modelling of aromatics and soot formation from large fuel molecules. Proceedings of the Combustion Institute, 32, 753–59.
  • Marinov, N. M., W. J. Pitz, C. K. Westbrook, M. J. Castaldi, and S. M. Senkan. 1996. Modeling of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames. Combustion Science and Technology 116-117 (1–6):211–87. doi:10.1080/00102209608935550.
  • Marinov, N. M., W. J. Pitz, C. K. Westbrook, A. M. Vincitore, M. J. Castaldi, S. M. Senkan, and C. F. Melius. 1998. Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame. Combustion and Flame 114 (1–2):192–213. doi:10.1016/S0010-2180(97)00275-7.
  • Mebel, A. M., Y. Georgievskii, A. W. Jasper, and S. J. Klippenstein. 2016. Pressure-dependent rate constants for PAH growth: Formation of indene and its conversion to naphthalene. Faraday Discuss. 195:637–70. doi:10.1039/C6FD00111D.
  • Miller, J. A., and S. J. Klippenstein. 2003. The Recombination of Propargyl Radicals and Other Reactions on a C6H6 Potential. J Phys Chem A 107 (39):7783–99. doi:10.1021/jp030375h.
  • Mulholland, J. A., M. Lu, and D.-H. Kim 2000. Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties. Proceedings of the Combustion Institute, 28, 2593–99.
  • Nicovich, J. M., and A. R. Ravishankara. 1984. Reaction of hydrogen atom with benzene. Kinetics and mechanism. J Phys Chem 88 (12):2534–41. doi:10.1021/j150656a021.
  • Nist 2015. NIST Chemical Kinetics Database, Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data Version 2015.09.
  • Park, J., G. J. Nam, I. V. Tokmakov, and M. C. Lin. 2006. Experimental and Theoretical Studies of the Phenyl Radical Reaction with Propene. J Phys Chem A 110 (28):8729–35. doi:10.1021/jp062413d.
  • Park, J., I. V. Tokmakov, and M. C. Lin. 2007. Experimental and Computational Studies of the Phenyl Radical Reaction with Allene †. J Phys Chem A 111 (29):6881–89. doi:10.1021/jp0708502.
  • Parker, D. S. N., R. I. Kaiser, B. Bandyopadhyay, O. Kostko, T. P. Troy, and M. Ahmed. 2015. Unexpected Chemistry from the Reaction of Naphthyl and Acetylene at Combustion-Like Temperatures. Angewandte Chemie International Edition 54 (18):5421–24. doi:10.1002/anie.201411987.
  • Porfiriev, D. P., V. N. Azyazov, and A. M. Mebel. 2020. Conversion of acenaphthalene to phenalene via methylation: A theoretical study. Combustion and Flame 213:302–13. doi:10.1016/j.combustflame.2019.11.038.
  • Rahman, R. K., S. Ibrahim, and A. Raj. 2016. Oxidative destruction of monocyclic and polycyclic aromatic hydrocarbon (PAH) contaminants in sulfur recovery units. Chem Eng Sci 155:348–65. doi:10.1016/j.ces.2016.08.027.
  • Raj, A., M. J. Al Rashidi, S. H. Chung, and S. M. Sarathy. 2014. PAH Growth Initiated by Propargyl Addition: Mechanism Development and Computational Kinetics. J Phys Chem A 118 (16):2865–85. doi:10.1021/jp410704b.
  • Raj, A., I. D. C. Prada, A. A. Amer, and S. H. Chung. 2012. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combustion and Flame 159:500–15. doi:10.1016/j.combustflame.2011.08.011.
  • Richter, H., and J. B. Howard. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Progress in Energy and Combustion Science 26:565–608. doi:10.1016/S0360-1285(00)00009-5.
  • Savchenkova, A. S., I. V. Chechet, S. G. Matveev, M. Frenklach, and A. M. Mebel 2021. Formation of phenanthrenyl radicals via the reaction of acenaphthyl with acetylene. Proceedings of the Combustion Institute, 38, 1441–48.
  • Sharma, S., M. R. Harper, and W. H. Green. 2010. Modeling of 1, 3-hexadiene, 2, 4-hexadiene and 1, 4-hexadiene-doped methane flames: Flame modeling, benzene and styrene formation. Combustion and Flame 157:1331–45. doi:10.1016/j.combustflame.2010.02.012.
  • Shukla, B., A. Miyoshi, and M. Koshi. 2010. Role of Methyl Radicals in the Growth of PAHs. J. Am. Soc. Mass Spectrom. 21:534–44. doi:10.1016/j.jasms.2009.12.019.
  • Sinha, S., R. K. Rahman, and A. Raj. 2017. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: Pyrene and fluoranthene formation from benzyl–indenyl addition. Physical Chemistry Chemical Physics 19 (29):19262–78. doi:10.1039/C7CP02539D.
  • Sinha, S., and A. Raj. 2016. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: A reaction kinetics study. Physical Chemistry Chemical Physics 18 (11):8120–31. doi:10.1039/C5CP06465A.
  • Sivaramakrishnan, R., K. Brezinsky, H. Vasudevan, and R. S. Tranter. 2006. A SHOCK-TUBE STUDY OF THE HIGH-PRESSURE THERMAL DECOMPOSITION OF BENZENE. Combustion Science and Technology 178 (1–3):285–305. doi:10.1080/00102200500292340.
  • Skiles, S. M., M. Flanner, J. M. Cook, M. Dumont, and T. H. Painter. 2018. Radiative forcing by light-absorbing particles in snow. Nat Clim Chang 8 (11):964–71. doi:10.1038/s41558-018-0296-5.
  • Tokmakov, I., and M. C. Lin. 2004. Combined Quantum Chemical/RRKM-ME Computational Study of the Phenyl + Ethylene, Vinyl + Benzene, and H + Styrene Reactions †. J Phys Chem A 108 (45):9697–714. doi:10.1021/jp049950n.
  • Tokmakov, I. V., J. Park, and M. C. Lin. 2005. Experimental and Computational Studies of the Phenyl Radical Reaction with Propyne. ChemPhysChem 6:2075–85.
  • Tregrossi, A., A. Ciajolo, and R. Barbella. 1999. The combustion of benzene in rich premixed flames at atmospheric pressure. Combustion and Flame 117 (3):553–61. doi:10.1016/S0010-2180(98)00157-6.
  • Troe, J. 1977a. Theory of thermal unimolecular reactions at low pressures. I. Solutions of the master equation. J. Chem. Phys. 66 (11):4745–57. doi:10.1063/1.433837.
  • Troe, J. 1977b. Theory of thermal unimolecular reactions at low pressures. II. Strong collision rate constants. Applications. J. Chem. Phys. 66 (11):4758–75. doi:10.1063/1.433838.
  • Violi, A., T. N. Truong, and A. F. Sarofim. 2004. Kinetics of Hydrogen Abstraction Reactions from Polycyclic Aromatic Hydrocarbons by H Atoms. J Phys Chem A 108 (22):4846–52. doi:10.1021/jp026557d.
  • Wang, H., and M. Frenklach. 1994. Transport properties of polycyclic aromatic hydrocarbons for flame modeling. Combustion and Flame 96 (1–2):163–70. doi:10.1016/0010-2180(94)90167-8.
  • Wang, Y., and S. H. Chung. 2019. Soot formation in laminar counterflow flames. Progress in Energy and Combustion Science 74:152–238.
  • Wang, Y., X. Gao, H.-J. Qian, Y. Ohta, X. Wu, G. Eres, K. Morokuma, and S. Irle. 2014. Quantum chemical simulations reveal acetylene-based growth mechanisms in the chemical vapor deposition synthesis of carbon nanotubes. Carbon 72:22–37. doi:10.1016/j.carbon.2014.01.020.
  • Wei, M., T. Zhang, S. Li, G. Guo, and D. Zhang. 2017. Naphthalene formation pathways from phenyl radical via vinyl radical (C2H3) and vinylacetylene (C4H4): Computational studies on reaction mechanisms and kinetics. Can J Chem 95 (8):816–23. doi:10.1139/cjc-2017-0090.
  • Whitesides, R., D. Domin, R. Salomón-Ferrer, W. A. Lester, and M. Frenklach. 2008. Graphene Layer Growth Chemistry:  Five- and Six-Member Ring Flip Reaction. J Phys Chem A 112 (10):2125–30. doi:10.1021/jp075785a.
  • Whitesides, R., D. Domin, R. Salomón-Ferrer, W. A. Lester, and M. Frenklach 2009. Embedded-ring migration on graphene zigzag edge. Proceedings of the Combustion Institute, 32, 577–83.
  • Whitesides, R., and M. Frenklach. 2010. Detailed Kinetic Monte Carlo Simulations of Graphene-Edge Growth. J Phys Chem A 114 (2):689–703. doi:10.1021/jp906541a.
  • Whitesides, R., A. C. Kollias, D. Domin, W. A. Lester, and M. Frenklach 2007. Graphene layer growth: Collision of migrating five-member rings. Proceedings of the Combustion Institute, 31, 539–46.
  • Wick, A., M. Frenklach, and H. Pitsch. 2020. Systematic assessment of the Method of Moments with Interpolative Closure and guidelines for its application to soot particle dynamics in laminar and turbulent flames. Combustion and Flame 214:450–63. doi:10.1016/j.combustflame.2020.01.007.
  • Yang, T., R. I. Kaiser, T. P. Troy, B. Xu, O. Kostko, M. Ahmed, A. M. Mebel, M. V. Zagidullin, and V. N. Azyazov. 2017. HACA’s Heritage: A Free-Radical Pathway to Phenanthrene in Circumstellar Envelopes of Asymptotic Giant Branch Stars. Angewandte Chemie 129 (16):4586–90. doi:10.1002/ange.201701259.
  • Yang, T., T. P. Troy, B. Xu, O. Kostko, M. Ahmed, A. M. Mebel, and R. I. Kaiser. 2016. Hydrogen-Abstraction/Acetylene-Addition Exposed. Angewandte Chemie International Edition 55 (48):14983–87. doi:10.1002/anie.201607509.
  • You, X., R. Whitesides, D. Zubarev, W. A. Lester, and M. Frenklach 2011. Bay-capping reactions: Kinetics and influence on graphene-edge growth. Proceedings of the Combustion Institute, 33, 685–92.
  • Young, D. 2004. Computational chemistry: A practical guide for applying techniques to real world problems. Wiley. com.
  • Zhang, H.-B., D. Hou, C. Law, and X. You. 2016. The Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth. J Phys Chem A 120.
  • Zhu, L., X. Shi, Y. Sun, Q. Zhang, and W. Wang. 2017. The growth mechanism of polycyclic aromatic hydrocarbons from the reactions of anthracene and phenanthrene with cyclopentadienyl and indenyl. Chemosphere 189:265–76. doi:10.1016/j.chemosphere.2017.09.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.