182
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Impact of Sawmill Waste on SO2 Emissions from Co-firing with Lignite

, , &
Pages 820-836 | Received 09 May 2021, Accepted 30 Aug 2021, Published online: 12 Sep 2021

References

  • Abdul Wahid, F. R. A., S. Saleh, and N. A. F. Abdul Samad. 2017. Estimation of higher heating value of torrefied palm oil wastes from proximate analysis. Energy Procedia. 138: 307–12. Elsevier Ltd. doi:10.1016/j.egypro.2017.10.102.
  • Aghaie, M., M. Mehrpooya, and F. Pourfayaz. 2016. Introducing an integrated chemical looping hydrogen production, inherent carbon capture and solid oxide fuel cell biomass fueled power plant process configuration. Energy Convers. Manage. 124:141–54. doi:10.1016/j.enconman.2016.07.001.
  • Ahn, S., G. Choi, and D. Kim. 2014. The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition. Biomass Bioenergy 71:144–54. doi:10.1016/j.biombioe.2014.10.014.
  • Al-Mansour, F., and J. Zuwala. 2010. An evaluation of biomass co-firing in Europe. Biomass Bioenergy 34 (5):620–29. doi:10.1016/j.biombioe.2010.01.004.
  • Archer, S. A., R. J. Murphy, and R. Steinberger-Wilckens. 2018. Methodological analysis of palm oil biodiesel life cycle studies. Renewable Sustainable Energy Rev. 94: 694–704. Elsevier Ltd. doi:10.1016/j.rser.2018.05.066.
  • Bala-Litwiniak, A., and M. Zajemska. 2020. Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler. Renewable Energy 162:151–59. doi:10.1016/j.renene.2020.07.139.
  • Beagle, E., and E. Belmont. 2019. Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States. Energy Policy 128:267–75. doi:10.1016/j.enpol.2019.01.006.
  • Bi, H., C. Wang, Q. Lin, X. Jiang, C. Jiang, L. Bao, et al. 2020. Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR. Energy 213:118790. doi:10.1016/j.energy.2020.118790.
  • Bouchekara, H. R. E. H., M. S. Javaid, Y. A. Shaaban, M. S. Shahriar, M. A. M. Ramli, Y. Latreche, et al. 2021. Decomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertainty. Energy Rep 7:52–69. doi:10.1016/j.egyr.2020.11.102.
  • Chao, C. Y. H., P. C. W. Kwong, J. H. Wang, C. W. Cheung, G. Kendall, et al. 2008. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions. Bioresour. Technol. 99 (1):83–93. doi:10.1016/j.biortech.2006.11.051.
  • Cheng, J., F. Zhou, T. Si, J. Zhou, K. Cen, et al. 2018. Mechanical strength and combustion properties of biomass pellets prepared with coal tar residue as a binder. Fuel Process. Technol. 179:229–37. doi:10.1016/j.fuproc.2018.07.011.
  • Coppola, A., A. Esposito, F. Montagnaro, M. Iuliano, F. Scala, P. Salatino, et al. 2019. The combined effect of H2O and SO2 on CO2 uptake and sorbent attrition during fluidised bed calcium looping. Proc. Combust. Inst. 37 (4):4379–87. doi:10.1016/j.proci.2018.08.013.
  • Czech, T., A. Marchewicz, A. T. Sobczyk, A. Krupa, A. Jaworek, Ł. Śliwiński, D. Rosiak, et al. 2020. Heavy metals partitioning in fly ashes between various stages of electrostatic precipitator after combustion of different types of coal. Process Saf. Environ. Prot. 133:18–31. doi:10.1016/j.psep.2019.10.033.
  • Dai, S., D. Ji, C. R. Ward, D. French, J. C. Hower, X. Yan, Q. Wei, et al. 2018. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. International Journal of Coal Geology 197:84–114. doi:10.1016/j.coal.2018.08.006.
  • Duan, L., Y. Duan, C. Zhao, E. J. Anthony, et al. 2015. NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor. Fuel 150:8–13. doi:10.1016/j.fuel.2015.01.110.
  • Energy Agency, I. (no date) Key world energy statistics 2019.
  • Feng, P., W. Lin, P. A. Jensen, W. Song, L. Hao, S. Li, K. Dam-Johansen, et al. 2020. Characterization of solid residues from entrained flow gasification of coal bio-oil slurry. Energy Fuels 34 (5):5900–06. doi:10.1021/acs.energyfuels.9b04437.
  • Finkelman, R. B., S. Dai, and D. French. no date. The importance of minerals in coal as the hosts of chemical elements: A review.
  • Gaber, C., P. Wachter, M. Demuth, C. Hochenauer, et al. 2020. Experimental investigation and demonstration of pilot-scale combustion of oil-water emulsions and coal-water slurry with pronounced water contents at elevated temperatures with the use of pure oxygen. Fuel 282:118692. doi:10.1016/j.fuel.2020.118692.
  • Gao, W., M. Zhang, and H. Wu. 2016. Fuel properties and ageing of bioslurry prepared from glycerol/methanol/bio-oil blend and biochar. Fuel 176:72–77. doi:10.1016/j.fuel.2016.02.056.
  • Gładysz, P., W. Stanek, L. Czarnowska, S. Sładek, A. Szlęk, et al. 2018. Thermo-ecological evaluation of an integrated MILD oxy-fuel combustion power plant with CO2 capture, utilisation, and storage – A case study in Poland. Energy 144:379–92. doi:10.1016/j.energy.2017.11.133.
  • Goerndt, M. E., F. X. Aguilar, and K. Skog. 2013. Drivers of biomass co-firing in U.S. coal-fired power plants. Biomass and Bioenergy 58:158–67. doi:10.1016/j.biombioe.2013.09.012.
  • Gogebakan, Z., Y. Gogebakan, and N. Selçuk. 2008. Co-firing of olive residue with lignite in bubbling FBC. Combust. Sci. Technol. 180 (5):854–68. doi:10.1080/00102200801894117.
  • GROWING POWER. Advanced solutions for bioenergy technology from Finland - PDF Free Download. (no date). Available at: http://docplayer.net/39085396-Growing-power-advanced-solutions-for-bioenergy-technology-from-finland.html (Accessed: 17 March 2021).
  • Huang, Y., D. McIlveen-Wright, S. Rezvani, Y. D. Wang, N. Hewitt, B. C. Williams, et al. 2006. Biomass co-firing in a pressurized fluidized bed combustion (PFBC) combined cycle power plant: A techno-environmental assessment based on computational simulations. Fuel Process. Technol. 87 (10):927–34. doi:10.1016/j.fuproc.2006.07.003.
  • Issac, M., A. De Girolamo, B. Dai, T. Hosseini, L. Zhang, et al. 2020. Influence of biomass blends on the particle temperature and burnout characteristics during oxy-fuel co-combustion of coal. J. Energy Inst. 93 (1):1–14. doi:10.1016/j.joei.2019.04.014.
  • Karpan, B., A. A. Abdul Raman, and M. K. Taieb Aroua. 2021. Waste-to-energy: Coal-like refuse derived fuel from hazardous waste and biomass mixture. Process Saf. Environ. Prot. 149:655–64. doi:10.1016/j.psep.2021.03.009.
  • Key World Energy Statistics 2020 – Analysis – IEA. (no date). Available at: https://www.iea.org/reports/key-world-energy-statistics-2020 (Accessed: 17 March 2021).
  • Kuznetsov, G. V., and S. A. Yankovskii. 2019. Conditions and characteristics in ignition of composite fuels based on coal with the addition of wood. Therm. Eng. 66 (2):133–37. doi:10.1134/S0040601519020010.
  • Kuznetsov, G. V., S. A. Yankovskii, A. A. Tolokol’nikov, I. V. Cherednik, et al. 2020. Mechanism of the suppression of sulfur oxides in the oxidative thermolysis products of coals upon their combustion in a mixture with dispersed wood. Solid Fuel Chem. 54 (5):311–17. doi:10.3103/S0361521920030076.
  • Lazarus, M., and H. van Asselt. 2018. Fossil fuel supply and climate policy: Exploring the road less taken. Clim Change 150 (1–2):1–13. Springer Netherlands. doi:10.1007/s10584-018-2266-3.
  • Lee, S. H., K. B. Choi, J. G. Lee, J. H. Kim, et al. 2006. Gasification characteristics of combustible wastes in a 5 ton/day fixed bed gasifier. Korean J. Chem. Eng. 23 (4):576–80. doi:10.1007/BF02706797.
  • Li, B., X. Zhuang, X. Querol, N. Moreno, L. Yang, Y. Shangguan, J. Li, et al. 2019. Mineralogy and geochemistry of late permian coals within the Tongzi coalfield in Guizhou province, Southwest China. Minerals 10 (1):44. doi:10.3390/min10010044.
  • Li, G., B. Wang, Z. Wang, Z. Li, Q. Sun, W. Q. Xu, Y. Li, et al. 2018. Reaction mechanism of low-temperature selective catalytic reduction of NOx over Fe-Mn oxides supported on fly-ash-derived SBA-15 molecular sieves: Structure–activity relationships and in situ DRIFT analysis’. J. Phys. Chem. C 122 (35):20210–31. doi:10.1021/acs.jpcc.8b03135.
  • Li, H., H. Chi, H. Han, S. Hu, G. Song, Y. Wang, L. He, Y. Wang, S. Su, J. Xiang, et al. 2021. Comprehensive study on co-combustion behavior of pelletized coal-biomass mixtures in a concentrating photothermal reactor. Fuel Process. Technol. 211:106596. doi:10.1016/j.fuproc.2020.106596.
  • Li, J., M. C. Paul, P. L. Younger, I. Watson, M. Hossain, S. Welch, et al. 2015. Characterization of biomass combustion at high temperatures based on an upgraded single particle model. Appl. Energy 156:749–55. doi:10.1016/j.apenergy.2015.04.027.
  • Liu, J., V. P. Nechaev, S. Dai, H. Song, E. V. Nechaeva, Y. Jiang, I. T. Graham, D. French, P. Yang, J. C. Hower, et al. 2020. Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. International Journal of Coal Geology 223:103468. doi:10.1016/j.coal.2020.103468.
  • Liu, M., et al. 2021. Co-combustion and ash fusion characteristics of eucommia leaf residues and coal. Ranshao Kexue Yu Jishu/J. Combust. Sci. Technol. 27 (1):90–97. doi:10.11715/rskxjs.R201907018.
  • Mahidin, A. P. Hayati, M. Zhafran, M. A. Sidiq, A. Rinaldi, B. Fitria, et al. 2020. Analysis of power from palm oil solid waste for biomass power plants: A case study in Aceh province. Chemosphere 253:126714. doi:10.1016/j.chemosphere.2020.126714.
  • Munir, S., W. Nimmo, and B. M. Gibbs. 2011. The effect of air staged, co-combustion of pulverised coal and biomass blends on NOx emissions and combustion efficiency. Fuel 90 (1):126–35. doi:10.1016/j.fuel.2010.07.052.
  • Mylläri, F., P. Karjalainen, R. Taipale, P. Aalto, A. Häyrinen, J. Rautiainen, L. Pirjola, R. Hillamo, J. Keskinen, T. Rönkkö, et al. 2017. Physical and chemical characteristics of flue-gas particles in a large pulverized fuel-fired power plant boiler during co-combustion of coal and wood pellets. Combust.Flame 176:554–66. doi:10.1016/j.combustflame.2016.10.027.
  • Nie, L., et al. 2021. Pilot-scale study on slagging characteristics during co-combustion of Straws and Shenfu bituminous coal. Ranshao Kexue Yu Jishu/J. Combust. Sci. Technol. 27 (2):129–34. doi:10.11715/rskxjs.R202005015.
  • Nobre, C., O. Alves, A. Longo, C. Vilarinho, M. Gonçalves, et al. 2019. Torrefaction and carbonization of refuse derived fuel: Char characterization and evaluation of gaseous and liquid emissions. Bioresour. Technol. 285:121325. doi:10.1016/j.biortech.2019.121325.
  • Nyashina, G. S., K. Y. Vershinina, N. E. Shlegel, P. A. Strizhak, et al. 2019. Effective incineration of fuel-waste slurries from several related industries. Environ. Res. 176:108559. doi:10.1016/j.envres.2019.108559.
  • Opydo, M., A. Dudek, and R. Kobyłecki. 2019. Characteristics of solids accumulation on steel samples during co-combustion of biomass and coal in a CFB boiler. Biomass Bioenergy 120:291–300. doi:10.1016/j.biombioe.2018.11.027.
  • (PDF) Ecological Risk Assessment: Interpreting the Policy Debate. (no date). Available at: https://www.researchgate.net/publication/263888954_Ecological_Risk_Assessment_Interpreting_the_Policy_Debate (Accessed: 17 March 2021).
  • Riaza, J., R. Khatami, Y. A. Levendis, L. Álvarez, M. V. Gil, C. Pevida, F. Rubiera, J. J. Pis, et al. 2014. Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass Bioenergy 64:162–74. doi:10.1016/j.biombioe.2014.03.018.
  • Rokni, E., A. Panahi, X. Ren, Y. A. Levendis, et al. 2016. Curtailing the generation of sulfur dioxide and nitrogen oxide emissions by blending and oxy-combustion of coals. Fuel 181:772–84. doi:10.1016/j.fuel.2016.05.023.
  • Rokni, E., X. Ren, A. Panahi, Y. A. Levendis, et al. 2018. Emissions of SO2, NOx, CO2, and HCl from Co-firing of coals with raw and torrefied biomass fuels. Fuel 211:363–74. doi:10.1016/j.fuel.2017.09.049.
  • Spliethoff, H., W. Scheurer, and K. R. G. Hein. 2000. Effect of co-combustion of sewage sludge and biomass on emissions and heavy metals behaviour. Process Saf. Environ. Prot. 78 (1):33–39. doi:10.1205/095758200530420.
  • Tabakaev, R., I. Kanipa, A. Astafev, Y. Dubinin, N. Yazykov, A. Zavorin, V. Yakovlev, et al. 2019. Thermal enrichment of different types of biomass by low-temperature pyrolysis. Fuel 245:29–38. doi:10.1016/j.fuel.2019.02.049.
  • Volumetric combustion of biomass for CO2 and NOx reduction in coal-fired boilers | Elsevier Enhanced Reader (no date). Available at: https://reader.elsevier.com/reader/sd/pii/S0016236112005121?token=3B75D3C2CB06BFE08288F4CE5A0A117905DC5C1C5C813351AE34DBFC8A79B43C1DD477651BD0FCA7319B2FD3E3F1016D (Accessed: 17 March 2021).
  • Wang, M., et al. 2021. Effect of vermiculite on the mineral evolution and ash melting temperature of Zhundong Coal ash. Ranshao Kexue Yu Jishu/J. Combust. Sci. Technol. 27 (2):141–47. doi:10.11715/rskxjs.R202004001.
  • Wang, X., Y. Li, W. Zhang, J. Zhao, Z. Wang, et al. 2020. Simultaneous SO2 and NO removal by pellets made of carbide slag and coal char in a bubbling fluidized-bed reactor. Process Saf. Environ. Prot. 134:83–94. doi:10.1016/j.psep.2019.11.022.
  • Yankovsky, S. A., and G. V. Kuznetsov. 2019. Physicochemical transformations of mixed fuels based on typical coals and wood upon heating. Solid Fuel Chem. 53 (1):22–28. doi:10.3103/S0361521919010087.
  • Zhuang, X., X. Querol, A. Alastuey, F. Plana, N. Moreno, J. M. Andrés, J. Wang, et al. 2007. Mineralogy and geochemistry of the coals from the Chongqing and Southeast Hubei coal mining districts, South China. International Journal of Coal Geology 71 (2–3):263–75. doi:10.1016/j.coal.2006.09.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.