428
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The Role of Flame–flow Interactions on Lean Premixed Lifted Flame Stabilization in a Low Swirl Flow

, , &
Pages 897-922 | Received 11 May 2021, Accepted 01 Sep 2021, Published online: 30 Sep 2021

References

  • Anderson, T. W., and D. A. Darling. 1952. Goodness of fit criteria based on stochastic processes. Ann. Math. Stat 23 (2):193–212. doi:10.1214/aoms/1177729437.
  • Bagheri-sadeghi, N., M. Shahsavari, and M. Farshchi. 2013. Experimental characterization of response of lean premixed low-swirl flames to acoustic excitations. Int. J. Spray Combust. Dyn 5 (4):309–28. doi:10.1260/1756-8277.5.4.309.
  • Blesinger, G., R. Koch, and H. J. Bauer. 2010. Influence of flow field scaling on flashback of swirl flames. Exp. Therm. Fluid Sci 34 (3):290–98. doi:10.1016/j.expthermflusci.2009.10.026.
  • Bury, K. 1999. Statistical Distributions in Engineering. Cambridge: Cambridge University Press.
  • Chan, C. K., K. S. Lau, W. K. Chin, and R. K. Cheng. 1992. Freely propagating open premixed turbulent flames stabilized by swirl. Proc. Combust. Inst. 24(1):511–18. doi:10.1016/S0082-0784(06)80065-2.
  • Cheng, R. K. 1995. Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101 (1–2):1–14. doi:10.1016/0010-2180(94)00196-Y.
  • Cheng, R. K. 2000. Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc. Combust. Inst 28 (1):1305–13. doi:10.1016/S0082-0784(00)80344-6.
  • Cheng, R. K., and D. Littlejohn. 2008a. Effects of Combustor Geometry on the Flowfields and Flame Properties of a Low-swirl Injector. Berlin: ASME Turbo Expo.
  • Cheng, R. K., and D. Littlejohn. 2008b. Laboratory study of premixed H2-air and H2-N2-air flames in a low-swirl injector for ultralow emissions gas turbines. J. Eng. Gas Turb. Power 130 (3):31503–11. doi:10.1115/1.2836480.
  • Cheng, R. K., D. Littlejohn, P. A. Strakey, and T. Sidwell. 2009. Laboratory investigations of low-swirl injector with H2 and CH4 at gas turbine conditions. Proc. Combust. Inst. 32(2):3001–09. doi:10.1016/j.proci.2008.06.141.
  • Cheng, R. K., D. Littlejohn, W. A. Nazeer, and K. O. Smith. 2008. Laboratory studies of the flow field characteristics of low-swirl injectors for adaptation to fuel-flexible turbines. J. Eng. Gas Turb. Power. 130(2):21501–11. doi:10.1115/1.2795786.
  • Colin, O., F. Ducros, D. Veynante, and T. Poinsot. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids. 12(7):1843–63. doi:10.1063/1.870436.
  • Dunn-Rankin, D. 2008. Lean Combustion: Technology and Control. Burlington: Academic Press.
  • Fritz, J., M. Kroner, and T. Sattelmayer. 2004. Flashback in a swirl burner with cylindrical premixing zone. J. Eng. Gas Turbines Power 126 (2):276–83. doi:10.1115/1.1473155.
  • Garcia-Villalba, M., J. Frohlich, and W. Rodi. 2006. Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation. Phys. Fluids 18:055103. doi:10.1063/1.2202648.
  • Germano, M., U. Piomelli, P. Moin, and W. Cabot. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids. 3(7):1760–65. doi:10.1063/1.857955.
  • Hall, M. G. 1972. Vortex breakdown. Annu. Rev. Fluid Mech 4 (1):195–218. doi:10.1146/annurev.fl.04.010172.001211.
  • Huang, Y., and V. Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energ. Combust 35 (4):293–364.
  • Johnson, M. R. 2005. A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc. Combust. Inst 30 (2):2867–74. doi:10.1016/j.proci.2004.07.040.
  • Kiesewetter, F., C. Hirsch, J. Fritz, and M. Kroner. 2003. Two-dimensional Flashback Simulation in Strongly Swirling Flows. ASME. s.l.
  • Kiesewetter, F., M. Konle, and T. Sattelmayer. 2007. Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone. J. Eng. Gas Turbines Power 129 (4):929–36. doi:10.1115/1.2747259.
  • Konle, M., and T. Sattelmayer. 2009. Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown. Exp. Fluids 47:627–35. doi:10.1007/s00348-009-0679-5.
  • Kornev, N., H. Kroger, J. Turnow, and E. Hassel. 2007. Synthesis of artificial turbulent fields with prescribed second-order statistics using the random-spot method. J. Appl. Math. Mech 7 (1):2100047–48.
  • Kroner, M., J. Fritz, and T. Sattelmayer. 2003. Flashback limits for combustion induced vortex breakdown in a swirl burner. J. Eng. Gas Turbines Power 125 (3):693–700. doi:10.1115/1.1582498.
  • Kuo, K. K., and R. Acharya. 2012. Fundamentals of Turbulent and Multiphase Combustion. New Jersey: Wiley.
  • Lacaze, G., E. Richardson, and T. Poinsot. 2009. Large eddy simulation of spark ignition in a turbulent methane jet. Combust. Flame 156 (10):1993–2009. doi:10.1016/j.combustflame.2009.05.006.
  • Legrand, M. 2010. Atmospheric low swirl burner flow characterization with stereo PIV. Exp. Fluids 48 (5):901–13. doi:10.1007/s00348-009-0775-6.
  • Libby, P. A., and F. A. Williams. 1980. Turbulent Reacting Flows. New York: Topics in Applied Physics.
  • Lieuwen, T. C. 2012. Unsteady Combustor Physics. Delhi: Cambridge University Press.
  • Lipatnikov, A. N., and J. Chomiak. 2010. Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci 36 (1):1–102. doi:10.1016/j.pecs.2009.07.001.
  • Littlejohn, D., and R. K. Cheng. 2007. Fuel effects on a low-swirl injector for lean premixed gas turbines. Proc. Combust. Inst 31 (2):3155–62. doi:10.1016/j.proci.2006.07.146.
  • Littlejohn, D., R. K. Cheng, D. R. Noble, and T. Lieuwen. 2010. Laboratory investigations of low-swirl injectors operating with syngases. J. Eng. Gas Turb. Power. 132(1):011502–011502–8. doi:10.1115/1.3124662.
  • Lucca-Negro, O., and T. O’Doherty. 2001. Vortex breakdown: A review. Prog. Energy Combust. Sci 27 (4):431–81. doi:10.1016/S0360-1285(00)00022-8.
  • Mansour, M., and Y. C. Chen. 2008. Stability characteristics and flame structure of low swirl burner. Exp. Therm. Fluid Sci 32 (7):1390–95. doi:10.1016/j.expthermflusci.2007.11.012.
  • Muniz, L., and M. G. Mungal. 1997. Instantaneous flame-stabilization velocity in lifted-jet diffusion flames. Combust. Flame 111 (1–2):16–30. doi:10.1016/S0010-2180(97)00096-5.
  • Nogenmyr, K. J. 2007. Large eddy simulation and experiments of stratified lean premixed methane/air turbulent flames. Proc. Combust. Inst 31 (1):1467–75. doi:10.1016/j.proci.2006.08.038.
  • Nogenmyr, K. J. 2008. A Comparative Study of LES Turbulent Combustion Models Applied to a Low Swirl Lean Premixed Burner. Nevada: AIAA.
  • Nogenmyr, K. J. 2009. Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame. Combust. Flame 156 (1):25–36. doi:10.1016/j.combustflame.2008.06.014.
  • Nogenmyr, K. J. 2011. Structure and stabilization mechanism of a stratified premixed low swirl flame. Proc. Combust. Inst 33 (1):1567–74. doi:10.1016/j.proci.2010.06.011.
  • Nogenmyr, K. J., H. J. Cao, C. K. Chan, and R. K. Chen. 2013. Effects of confinement on premixed turbulent swirling flame using large eddy simulation. Combust. Theory Mod. 17(6):1003–19. doi:10.1080/13647830.2013.820842.
  • Ogunnaike, B. A. 2009. Random Phenomena Fundamentals and Engineering Applications of Probability and Statistics. Boca Raton: CRC Press.
  • Petersson, P. 2007. Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame. Appl. Opt 46 (19):3928–36. doi:10.1364/AO.46.003928.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and Numerical Combustion. Philadelphia: Edwards.
  • Rosenkrantz, W. A. 2008. Introduction to Probability and Statistics for Science, Engineering, and Finance. Boca Raton: CRC Press.
  • Shahsavari, M., B. Wang, B. Zhang, G. Jiang, and D. Zhao. 2021. Response of supercritical round jets to various excitation modes. J. Fluid Mech 915 (A47):1–33. doi:10.1017/jfm.2021.78.
  • Shahsavari, M., M Farshchi, SR Chakravarthy, A Chakraborty, IB Aravind, and B Wang. 2019. Low swirl premixed methane-air flame dynamics under acoustic excitations. Phys. Fluids31 (9). doi:10.1063/1.5118826.
  • Shahsavari, M., I. B. Aravind, S. R. Chakravarthy, and M. Farshchi. 2016. Experimental study of lean premixed low swirl flame under acoustic excitations. International Symposium: Thermoacoustic Instabilities in Gas Turbines and Rocket Engines: Industry, Munich.
  • Shahsavari, M., and M. Farshchi. 2018. Large eddy simulation of low swirl flames under external flow excitations. Flow Turbul. Combust 100 (1):249–69. doi:10.1007/s10494-017-9829-7.
  • Shahsavari, M., M. Farshchi, B. Wang, and D. Zhao. 2019. Response of a Low Swirl Premixed Flame to Acoustic Perturbations. Beijing: ICDERS.
  • Shahsavari, M., M. Farshchi, and M. H. Arabnejad. 2017. Large eddy simulations of unconfined non-reacting and reacting turbulent low swirl jets. Flow Turbul. Combust 98 (3):817–40. doi:10.1007/s10494-016-9790-x.
  • Shepherd, I. G. 1995. Heat release and induced strain in premixed flames. Combust. Flame 103 (1–2):1–10. doi:10.1016/0010-2180(95)00077-J.
  • Smagorinsky, J. S. 1963. General circulation experiments with the primitive equations. Part 1: the basic experiment. Mon. Wea. Rev 91 (3):99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  • Strakey, P. A., and G. Eggenspieler. 2010. Development and validation of a thickened flame modeling approach for large eddy simulation of premixed combustion. J. Eng. Gas Turb. Power 132 (7):071501–071501–9. doi:10.1115/1.4000119.
  • Syred, N., and J. M. Beer. 1974. Combustion in swirling flows: A review. Combust. Flame 23 (2):143–201. doi:10.1016/0010-2180(74)90057-1.
  • Tangermann, E., M. Pfitznerm, M. Konle, and T. Sattelmayer. 2010. Large-eddy simulation and experimental observation of combustion-induced vortex breakdown. Combust. Sci. Technol. 182(4–6):505–16. doi:10.1080/00102200903463126.
  • Tryggvason, G. 1998. Mathematical Aspect of Vortex Dynamics. Philadelphia: SIAM.
  • Williams, G. C., H. C. Hottel, and A. C. Scurlock 1949. Flame stabilization and propagation in high velocity gas streams. Symposium on Combustion and Flame and Explosion Phenomena, 3: 21–40. (1).
  • Yegian, D. T., and R. K. Cheng. 1998. Development of a lean premixed low-swirl burner for low NOX practical applications. Combust. Sci. Technol 139 (1):207–27. doi:10.1080/00102209808952088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.