239
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on Combustion Characteristics and Pressure Oscillations of Turbulent Jet Ignition in a Confined Space

, , , , &
Pages 958-981 | Received 10 Jan 2021, Accepted 01 Sep 2021, Published online: 06 Sep 2021

References

  • Akhtar, M. S., S. Sun, X. Ma, Y. Shen, S.-J. Shuai, and Z. Wang. 2017. Effect of the pre-chamber orifice geometry on ignition and flame propagation with a natural gas spark plug. SAE Technical Paper, No. 2017–01–2338. doi:10.4271/2017-01-2338.
  • Allison, P. M., M. de Oliveira, A. Giusti, and E. Mastorakos. 2018. Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel 230:274–81. doi:10.1016/j.fuel.2018.05.005.
  • Alvarez, C. E. C., G. E. Couto, V. R. Roso, A. B. Thiriet, and R. M. Valle. 2018. A review of prechamber ignition systems as lean combustion technology for SI engines. Appl. Therm. Eng. 128:107–20. doi:10.1016/j.applthermaleng.2017.08.118.
  • Attard, W. P., and H. Blaxill. 2012. A lean burn gasoline fueled pre-chamber jet ignition combustion system achieving high efficiency and low NOx at part load. SAE Technical Paper, No. 2012-01-1146, doi:10.4271/2012-01-1146.
  • Attard, W. P., H. Blaxill, E. K. Anderson, and P. Litke. 2012a. Knock Limit Extension with a Gasoline Fueled Pre-Chamber Jet Igniter in a Modern Vehicle Powertrain. SAE International Journal of Engines 5.3 (2012): 1201–1215. doi:10.4271/2012-01-1143.
  • Attard, W. P., N. Fraser, P. Parsons, and E. Toulson. 2010. A turbulent jet ignition pre-chamber combustion system for large fuel economy improvements in a modern vehicle powertrain. SAE International Journal of Engines 3.2 (2010): 20–37. doi:10.4271/2010-01-1457
  • Attard, W. P., and P. Parsons. 2010. a normally aspirated spark initiated combustion system capable of high load, high efficiency and near zero NOx emissions in a modern vehicle powertrain. SAE International Journal of Engines 3.2 (2010): 269–287. doi:10.4271/2010-01-2196
  • Baumgartner, L. S., S. Karmann, F. Backes, A. Stadler, and G. Wachtmeister. 2017. Experimental investigation of orifice design effects on a methane fuelled prechamber gas engine for automotive applications. SAE Technical Paper 2017-24-0096, doi: 10.4271/2017-24-0096.
  • Biswas, S., and L. Qiao. 2018. Ignition of ultra-lean premixed hydrogen/air by an impinging hot jet. Appl. Energy 228:954–64. doi:10.1016/j.apenergy.2018.06.102.
  • Biswas, S., S. Tanvir, H. Wang, and L. Qiao. 2016. On ignition mechanisms of premixed CH 4 /air and H 2 /air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 106:925–37. doi:10.1016/j.applthermaleng.2016.06.070.
  • Boundy, R. G. 2019. Transportation Energy Data Book. Edition 37 ed. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States).
  • Boust, B., J. Sotton, S. Labuda, and M. J. C. Bellenoue, flame. 2007. A thermal formulation for single-wall quenching of transient laminar flames. Vol. 149, 286–94.
  • Bunce, M., H. Blaxill, W. Kulatilaka, and N. Jiang. 2014. The effects of turbulent jet characteristics on engine performance using a pre-chamber combustor. SAE Technical Paper 2014-01-1195, 2014. doi:10.4271/2014-01-1195.
  • Bychkov, V., V. Akkerman, G. Fru, A. Petchenko, and L.-E. Eriksson. 2007. Flame acceleration in the early stages of burning in tubes. Vol. 150, 263–76. Combust. Flame. 150.4 (2007): 263-276. doi:10.1016/j.combustflame.2007.01.004.
  • Bychkov, V., D. Valiev, and L. E. Eriksson. 2008. Physical mechanism of ultrafast flame acceleration. Phys. Rev. Lett. 101 (16):164501. doi:10.1103/PhysRevLett.101.164501.
  • Bychkov, V. V., and M. A. Liberman. 2000. Dynamics and stability of premixed flames. Phys Rep 325 (4–5):115–237. doi:10.1016/S0370-1573(99)00081-2.
  • Chinnathambi, P., M. Bunce, and L. Cruff. 2015. RANS based multidimensional modeling of an ultra-lean burn pre-chamber combustion system with auxiliary liquid gasoline injection. SAE Technical Paper, 2015. doi: 10.4271/2015-01-0386.
  • Feyz, M. E., V. R. Hasti, J. P. Gore, and M. R. Nalim. 2019. Large eddy simulation of hot jet ignition in moderate and high-reactivity mixtures. Comput Fluids 183:28–37. doi:10.1016/j.compfluid.2019.03.014.
  • Gentz, G., B. Thelen, M. Gholamisheeri, P. Litke, A. Brown, J. Hoke, and E. Toulson. 2015. A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine. Appl. Therm. Eng. 81:399–411. doi:10.1016/j.applthermaleng.2015.02.026.
  • Gholamisheeri, M., B. C. Thelen, G. R. Gentz, I. S. Wichman, and E. Toulson. 2016. Rapid compression machine study of a premixed, variable inlet density and flow rate, confined turbulent jet. Combustion and Flame 169:321–32. doi:10.1016/j.combustflame.2016.05.001.
  • Gholamisheeri, M., I. S. Wichman, and E. Toulson. 2017. A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame 183:194–206. doi:10.1016/j.combustflame.2017.05.008.
  • Ghorbani, A., G. Steinhilber, D. Markus, and U. Maas. 2015. Ignition by transient hot turbulent jets: An investigation of ignition mechanisms by means of a PDF/REDIM method. Proc. Combust. Inst. 35 (2):2191–98. doi:10.1016/j.proci.2014.06.104.
  • Grogan, K. P., S. Scott Goldsborough, and M. Ihme. 2015. Ignition regimes in rapid compression machines. Combustion and Flame 162 (8):3071–80. doi:10.1016/j.combustflame.2015.03.020.
  • Heywood, J. B. 1988. Internal Combustion Engine Fundamentals. McGraw-Hill. doi:10.4271/2015-01-0386
  • Hua, J., L. Zhou, Q. Gao, Z. Feng, and H. Wei. 2021. Influence of pre-chamber structure and injection parameters on engine performance and combustion characteristics in a turbulent jet ignition (TJI) engine. Fuel 283. doi:10.1016/j.fuel.2020.119236.
  • Iijima, T., and T. Takeno. 1986. Effects of temperature and pressure on burning velocity. Combustion and Flame 65 (1):35–43. doi:10.1016/0010-2180(86)90070-2.
  • Jamrozik, A., W. Tutak, A. Kociszewski, and M. Sosnowski. 2013. Numerical simulation of two-stage combustion in SI engine with prechamber. Appl. Math. Model. 37 (5):2961–82. doi:10.1016/j.apm.2012.07.040.
  • Liu, F., L. Zhou, J. Hua, C. Liu, and H. Wei. 2021. Effects of pre-chamber jet ignition on knock and combustion characteristics in a spark ignition engine fueled with kerosene. Fuel 293. doi:10.1016/j.fuel.2021.120278.
  • Milton, B. E., and J. C. Keck. 1984. Laminar burning velocities in stoichiometric hydrogen and hydrogen□hydrocarbon gas mixtures. Combustion and Flame 58 (1):13–22. doi:10.1016/0010-2180(84)90074-9.
  • Pitt, P. L., J. D. Ridley, and R. M. Clemilnts. 1983. An ignition system for ultra lean mixtures. Combust. Sci. Technol. 35 (5–6):277–85. doi:10.1080/00102208308923717.
  • Quader, A., 1974. Lean combustion and the misfire limit in spark ignition engines. SAE Technical Paper 741055.
  • Reitz, R. D., and G. Duraisamy. 2015. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energ Combust 46:12–71. doi:10.1016/j.pecs.2014.05.003.
  • Roethlisberger, R. P., and D. Favrat. 2003. Investigation of the prechamber geometrical configuration of a natural gas spark ignition engine for cogeneration: Part II. Experimentation. Int. J. Therm. Sci. 42 (3):239–53. doi:10.1016/S1290-0729(02)00024-8.
  • Sadanandan, R., D. Markus, R. Schießl, U. Maas, J. Olofsson, H. Seyfried, M. Richter, and M. Aldén, 2007. Detailed investigation of ignition by hot gas jets. Proceedings of the Combustion Institute 31, 719–26.
  • Tanoue, K., T. Kimura, T. Jimoto, J. Hashimoto, and Y. Moriyoshi. 2017a. Study of prechamber combustion characteristics in a rapid compression and expansion machine. Appl. Therm. Eng. 115:64–71. doi:10.1016/j.applthermaleng.2016.12.079.
  • Thelen, B. C., and E. Toulson. 2016. A Computational Study of the Effects of Spark Location on the Performance of a Turbulent Jet Ignition System. SAE Technical Paper, 2016. doi:10.4271/2016-01-0608.
  • Toulson, E., H. J. Schock, and W. P. Attard. 2010. A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems. SAE Technical Paper 2010-01-2263, 2010. doi:10.4271/2010-01-2263.
  • Validi, A., H. Schock, and F. Jaberi. 2017. Turbulent jet ignition assisted combustion in a rapid compression machine. Combustion and Flame 186:65–82. doi:10.1016/j.combustflame.2017.07.032.
  • Wei, H., D. Gao, L. Zhou, D. Feng, and R. Chen. 2017a. Different combustion modes caused by flame-shock interactions in a confined chamber with a perforated plate. Combustion and Flame 178:277–85. doi:10.1016/j.combustflame.2017.01.011.
  • Wei, H., D. Gao, L. Zhou, J. Zhao, and R. Chen. 2017b. Experimental investigation of turbulent flame propagation and pressure oscillation in a constant volume chamber equipped with an orifice plate. Combust. Sci. Technol 1–17. doi:10.1080/00102202.2017.1389910.
  • Wei, H., Z. Xu, L. Zhou, D. Gao, and J. Zhao. 2017c. Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames. Int. J. Hydrogen Energy 42 (17):12657–68. doi:10.1016/j.ijhydene.2017.03.099.
  • Wei, H., X. Zhang, H. Zeng, R. Deiterding, J. Pan, and L. Zhou. 2019a. Mechanism of end-gas autoignition induced by flame-pressure interactions in confined space. Physics of Fluids 31 (7):076106. doi:10.1063/1.5099456.
  • Wei, H., J. Zhao, X. Zhang, J. Pan, J. Hua, and L. Zhou. 2019b. Turbulent flame–shock interaction inducing end-gas autoignition in a confined space. Combustion and Flame 204:137–41. doi:10.1016/j.combustflame.2019.03.002.
  • Wei, H., J. Zhao, L. Zhou, D. Gao, and Z. Xu. 2017d. Effects of the equivalence ratio on turbulent flame–shock interactions in a confined space. Combustion and Flame 186:247–62. doi:10.1016/j.combustflame.2017.08.009.
  • Wu, F., G. Jomaas, and C. K. Law, 2013. An experimental investigation on self-acceleration of cellular spherical flames. Proceedings of the Combustion Institute 34, 937–45. doi: 10.1016/j.proci.2012.05.068.
  • Yamaguchi, S., N. Ohiwa, and T. Hasegawa. 1985. Ignition and burning process in a divided chamber bomb. Combust. Flame 59 (2):177–87. doi:10.1016/0010-2180(85)90023-9.
  • Yao, M., Z. Zheng, and H. Liu. 2009. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy Combustion Sci 35 (5):398–437. doi:10.1016/j.pecs.2009.05.001.
  • Zhao, J., L. Zhou, L. Zhong, X. Zhang, J. Pan, R. Chen, and H. Wei. 2019. Experimental investigation of the stochastic nature of end-gas autoignition with detonation development in confined combustion chamber. Combustion and Flame 210:324–38. doi:10.1016/j.combustflame.2019.08.040.
  • Zhou, L., D. Gao, J. Zhao, H. Wei, X. Zhang, Z. Xu, and R. Chen. 2018a. Turbulent flame propagation with pressure oscillation in the end gas region of confined combustion chamber equipped with different perforated plates. Combust. Flame 191:453–67. doi:10.1016/j.combustflame.2018.01.023.
  • Zhou, L., L. Zhong, J. Zhao, D. Gao, and H. Wei. 2018b. Flame propagation and combustion modes in end-gas region of confined space. Combust. Flame 190:216–23. doi:10.1016/j.combustflame.2017.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.