258
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Dimethyl Methylphosphonate for the Suppression of Coal Spontaneous Combustion

, &
Pages 982-999 | Received 10 Jul 2021, Accepted 31 Aug 2021, Published online: 08 Sep 2021

References

  • Benfell, K. E., B. B. Beamish, and K. A. Rodgers. 1996. Thermo gravimetric analytical procedures for characterizing New Zealand and Eastern Australian coals. Thermochim. Acta. 286 (1):67–74. doi:10.1016/0040-6031(96)02943-7.
  • Bodoev, N. R. G., N. N. Rokosova, and J. C. Wilhelm. 1995. Thermal analysis of sapropelic coals. Analusis 6 (23):274–76.
  • Brunol, E., F. Berger, M. Fromm, and R. Planade. 2006. Detection of dimethyl methylphosphonate (DMMP) by tin dioxide-based gas sensor: Response curve and understanding of the reactional mechanism. Sens. Actuators B Chem. 120 (1):35–41. doi:10.1016/j.snb.2006.01.040.
  • Cui, F. S., L. W. Bin, C. M. Shu, and J. C. Jiang. 2018. Inhibiting effect of imidazolium-based ionic liquids on the spontaneous combustion characteristics of lignite. Fuel 217:508–14. doi:10.1016/j.fuel.2017.12.092.
  • Deng, J., Z.-J. Bai, Y. Xiao, and C.-M. Shu. 2018a. Effects on the activities of coal microstructure and oxidation treated by imidazolium-based ionic liquids. J. Therm. Anal. Calorim. 133 (1):453–63. doi:10.1007/s10973-018-7310-z.
  • Deng, J., B. Li, Y. Xiao, L. Ma, C.-P. Wang, B. Lai-wang, and C.-M. Shu. 2017. Combustion properties of coal gangue using thermogravimetry–Fourier transform infrared spectroscopy. Appl. Therm. Eng. 116:244–52. doi:10.1016/j.applthermaleng.2017.01.083.
  • Deng, J., Y. Xiao, J. Lu, H. Wen, and Y. Jin. 2015. Application of composite fly ash gel to extinguish outcrop coal fires in China. Nat. Hazard. 79 (2):881–98. doi:10.1007/s11069-015-1881-9.
  • Deng, J., Y. Yang, Y. N. Zhang, B. Liu, and C. M. Shu. 2018b. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion. Energy 160:1174–85. doi:10.1016/j.energy.2018.07.040.
  • Dou, G. L., and Z. W. Jiang. 2019. Sodium humate as an effective inhibitor of low-temperature coal oxidation. Thermochim. Acta. 673:53–59. doi:10.1016/j.tca.2019.01.006.
  • Frisch, M. J., . G. W., H. B. S. Trucks, G. E. Scuseria, and M. A. Robb. 2009. Gaussian 09, Vol. 1. Wallingford, CT: Gaussian, Inc.
  • Hu, X. M., D. M. Wang, and W. M. Cheng. 2016. Effect of dosage of expandable graphite, dimethyl methylphosphonate, triethanolamine, and isocyanate on fluidity, mechanical, and flame retardant properties of polyurethane materials in coal reinforcement. Int. J. Min. Sci. Technol. 26 (2):345–52. doi:10.1016/j.ijmst.2015.12.023.
  • Huang, Z. A., C. W. Sun, Y. K. Gao, Y. C. Ji, H. Wang, Y. Zhang, and R. Yang. 2018. R&D of colloid components of composite material for fire prevention and extinguishing and an investigation of its performance. Process Saf. Environ. Prot. 113:357–68. doi:10.1016/j.psep.2017.11.004.
  • Li, B., G. Chen, H. Zhang, and C. D. Sheng. 2013. Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel 118:385–91. doi:10.1016/j.fuel.2013.11.011.
  • Li, B., M. J. Li, W. Gao, M. S. Bi, and L. Ma. 2019. Effects of particle size on the self-ignition behavior of a coal dust layer on a hot plate. Fuel. 260. doi:10.1016/j.fuel.2019.116269.
  • Li, B., J. H. Wang, M. S. Bi, W. Gao, and C. M. Shu. 2020a. Experimental study of thermophysical properties of coal gangue at initial stage of spontaneous combustion. J. Hazard. Mater. 400:123251. doi:10.1016/j.jhazmat.2020.123251.
  • Li, D.-J., Y. Xiao, H.-F. Lu, F. Xu, K.-H. Liu, and C.-M. Shu. 2020b. Effects of 1-butyl-3-methylimidazolium tetrafluoroborate on the exothermic and heat transfer characteristics of coal during low-temperature oxidation. Fuel 273:117589. doi:10.1016/j.fuel.2020.117589.
  • Li, J. H., Z. H. Li, Y. L. Yang, B. Kong, and C. J. Wang. 2018. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Process. Technol. 171:350–60. doi:10.1016/j.fuproc.2017.09.027.
  • Li, Q., W., . Y. Xiao, K.-Q. Zhong, C.-M. Shu, H.-F. Lu, J. Deng, and S. Wu. 2020c. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel 275:117981. doi:10.1016/j.fuel.2020.117981.
  • Liang, Y. T., J. Y. Li, Y. Y. He, Z. Jiang, and W. F. Shang Guan. 2021. Catalytic oxidation of dimethyl phthalate over titania-supported noble metal catalysts. J. Hazard. Mater. 401. doi:10.1016/j.jhazmat.2020.123274.
  • Liodakis, S., D. Bakirtzis, E. Lois, and D. Gakis. 2002. The effect of (NH4)2HPO4 and (NH4)2SO4 on the spontaneous ignition properties of pinus halepensis pine needles. Fire Saf. 37 (5):481–94. doi:10.1016/S0379-7112(02)00008-5.
  • Lu, Y., Z. L. Xi, B. X. Jin, M. T. Li, and C. X. Ren. 2020. Reaction mechanism and thermodynamics of the elimination of peroxy radicals by an antioxidant enzyme inhibitor complex. Fuel 272:117719. doi:10.1016/j.fuel.2020.117719.
  • Ma, H. Y., L. F. Tong, Z. B. Xu, Z. P. Fang, Y. M. Jin, and F. Z. Lu. 2007. A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Polym. Degrad. Stab. 92 (4):720–26. doi:10.1016/j.polymdegradstab.2006.12.009.
  • Ma, L., Y. Wang, R. L. Wang, L. F. Ren, and L. Zou. 2021. Effect of low oxygen concentrations on the thermokinetics of coal combustion. Combust. Sci. Technol. 193 (11):1903–13. doi:10.1080/00102202.2020.1716342.
  • Ma, L. Y., D. M. Wang, W. J. Kang, H. H. Xin, and G. L. Dou. 2019. Comparison of the staged inhibitory effects of two ionic liquids on spontaneous combustion of coal based on in situ FTIR and micro-calorimetric kinetic analyses. Process Saf. Environ. Prot. 121:326–37. doi:10.1016/j.psep.2018.11.008.
  • Ma, L. Y., D. M. Wang, Y. Wang, G. L. Dou, and H. H. Xin. 2017. Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal. Fuel Process. Technol. 157:65–75. doi:10.1016/j.fuproc.2016.11.011.
  • Onifade, M., and B. Genc. 2018. Spontaneous combustion of coals and coal-shales. Int. J. Min. Sci. Technol. 28 (6):933–40. doi:10.1016/j.ijmst.2018.05.013.
  • Onifade, M., and B. Genc. 2019. A review of spontaneous combustion studies – South African context. Int. J. Min. Reclam. Environ. 33 (8):527–47. doi:10.1080/17480930.2018.1466402.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 30 (3):303–311. doi:10.1016/j.ijmst.2020.03.001.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: A thermogravimetric study. Int. J. Min. Sci. Technol. 30 (5):691–98. doi:10.1016/J.IJMST.2020.03.006.
  • Onifade, M., B. Genc, A. R. Gbadamosi, A. Morgan, and T. Ngoepe. 2021. Influence of antioxidants on spontaneous combustion and coal properties. Process Saf. Environ. Prot. (Prepublish). 148:1019–32. doi:10.1016/J.PSEP.2021.02.017.
  • Pandey, J., N. K. Mohalik, R. K. Mishra, A. Khalkho, D. Kumar, and V. K. Singh. 2015. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire. Technol. 51 (2):227–45. doi:10.1007/s10694-012-0302-9.
  • Qin, B. T., G. L. Dou, Y. Wang, H. H. Xin, L. Y. Ma, and D. M. Wang. 2017. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190:129–35. doi:10.1016/j.fuel.2016.11.045.
  • Qin, B. T., G. L. Dou, and X. X. Zhong. 2018. Effect of stannous chloride on low-temperature oxidation reaction of coal. Fuel Process. Technol. 176:59–63. doi:10.1016/j.fuproc.2018.03.021.
  • Ren, X. F., X. M. Hu, D. Xue, Y. S. Li, Z. Shao, H. Dong, W. Cheng, Y. Zhao, L. Xin, and W. Lu. 2019. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. J. Hazard. Mater. 371:643–54. doi:10.1016/j.jhazmat.2019.03.041.
  • Roy, D., K. Todd, and M. John. 2009. Gauss view, version 5.
  • Shariatinia, Z., N. Javeri, and S. Shekarriz. 2015. Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohydr. Polym. 118:183–98. doi:10.1016/j.carbpol.2014.11.039.
  • Slovák, V., and B. Taraba. 2012. Urea and CaCl2 as inhibitors of coal low-temperature oxidation. J. Therm. Anal. Calorim. 110 (1):363–67. doi:10.1007/s10973-012-2482-4.
  • Su, C. H., C. C. Chen, H. J. Liaw, and S. C. Wang. 2014. The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers. Procedia Eng. 84:485–90. doi:10.1016/j.proeng.2014.10.459.
  • Tang, Y. B. 2016. Inhibition of low-temperature oxidation of bituminous coal using a novel phase-transition aerosol. Energy Fuels. 30 (11):9303–09. doi:10.1021/acs.energyfuels.6b02040.
  • Tang, Y. B., and S. Xue. 2015. Laboratory study on the spontaneous combustion propensity of lignite undergone heating treatment at low temperature in inert and low-oxygen environments. Energy Fuels. 29 (8):4683–89. doi:10.1021/acs.energyfuels.5b00217.
  • Taraba, B., R. Peter, and V. Slovák. 2011. Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Process. Technol. 92 (3):712–15. doi:10.1016/j.fuproc.2010.12.003.
  • Tian, Z. J., and X. L. Li. 2012. Research on technology for preventing spontaneous combustion of coal. Adv. Mater. Res. 524–27. https://www.scientific.net/AMR.10.4028/524-527.677.
  • Trotochaud, L., A. R. Head, C. Buchner, Y. Yu, O. Karslioglu, R. Tsyshevsky, S. Holdren, B. Eichhorn, M. M. Kuklja, and H. Bluhm. 2019. Room temperature decomposition of dimethyl methylphosphonate on cuprous oxide yields atomic phosphorus. Surf. Sci. 680:75–87. doi:10.1016/j.susc.2018.10.003.
  • Tsai, Y. T., Y. Yang, C. P. Wang, C. M. Shu, and J. Deng. 2018. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion. Int. J. Energy Res. 42 (3):1158–71. doi:10.1002/er.3915.
  • Wang, D.-M., -H.-H. Xin, X.-Y. Qi, G.-L. Dou, G.-S. Qi, and L.-Y. Ma. 2016a. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame. 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Pathways for production of CO2 and CO in low-temperature oxidation of coal. Energy Fuels. 17 (1):150–58. doi:10.1021/ef020095l.
  • Wang, L.-Y., Y.-L. Xu, S.-G. Jiang, M.-G. Yu, T.-X. Chu, W.-Q. Zhang, Z.-Y. Wu, and L.-W. Kou. 2012. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Saf. Sci. 50 (7):1528–34. doi:10.1016/j.ssci.2012.03.006.
  • Watanabe, W. S., and D. K. Zhang. 2001. The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal. Fuel Process. Technol. 74 (3):145–60. doi:10.1016/S0378-3820(01)00237-5.
  • Wu, K., Z. Wang, and Y. Hu. 2008. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: Preparation, characterization, and its flame retardance in polypropylene. Polymers for Advanced Technologies 19 (8):1118–25. doi:10.1002/pat.1095.
  • Wu, Z. Y., S. S. Hu, S. G. Jiang, X. J. He, H. Shao, K. Wang, D. Fan, and W. Li. 2018. Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor. J. Loss Prev. Process Ind. 56:272–77. doi:10.1016/j.jlp.2018.09.012.
  • Xi, Z. L., K. Gao, X. Y. Guo, M. T. Li, and C. X. Ren. 2021. Mechanistic study of the inhibition of active radicals in coal by catechin. Combust. Sci. Technol. 193 (11):1931–48. doi:10.1080/00102202.2020.1718122.
  • Xi, Z. L., B. X. Jin, L. Z. Jin, M. T. Li, and S. S. Li. 2020. Characteristic analysis of complex antioxidant enzyme inhibitors to inhibit spontaneous combustion of coal. Fuel 267:117301. doi:10.1016/j.fuel.2020.117301.
  • Xu, Y.-L., D.-M. Wang, L.-Y. Wang, -X.-X. Zhong, and T.-X. Chu. 2012. Experimental research on inhibition performances of the sand-suspended colloid for coal spontaneous combustion. Saf. Sci. 50 (4):822–27. doi:10.1016/j.ssci.2011.08.026.
  • Yang, S. Q. 1996. Experiment study and mechanism analysis of Ca(OH)2 as the retarder of high-sulfur coal. China Univ. Min. Technol. 4:68–72.
  • Yang, Y., Y. T. Tsai, Y. N. Zhang, C. M. Shu, and J. Deng. 2018. Inhibition of spontaneous combustion for different metamorphic degrees of coal using Zn/Mg/Al–CO3 layered double hydroxides. Process Saf. Environ. Prot. 113:401–12. doi:10.1016/j.psep.2017.11.011.
  • Yuan, H. X., W. Y. Xing, P. Zhang, L. Song, and Y. Hu. 2012. Functionalization of cotton with UV-cured flame retardant coatings. Ind. Eng. Chem. Res. 51 (15):5394–401. doi:10.1021/ie202468u.
  • Zeng, Q., Y. Pu, and Z. M. Cao. 2018. Kinetics of oxidation and spontaneous combustion of major super-thick coal seam in Eastern Junggar Coalfield, Xinjiang, China. J. Loss Prev. Process Ind. 56:128–36. doi:10.1016/j.jlp.2018.08.013.
  • Zhang, W. Q., S. G. Jiang, Z. Y. Wu, K. Wang, H. Shao, T. Qin, X. Xi, and H. Tian. 2018. Influence of imidazolium-based ionic liquids on coal oxidation. Fuel 217:529–35. doi:10.1016/j.fuel.2017.12.056.
  • Zhong, X. X., L. Kan, H. H. Xin, B. T. Qin, and G. L. Dou. 2019. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion. Fuel 236:1204–12. doi:10.1016/j.fuel.2018.09.059.
  • Zhong, X. X., B. T. Qin, G. L. Dou, C. Xia, and F. Wang. 2018. A chelated calcium-procyanidine-attapulgite composite inhibitor for the suppression of coal oxidation. Fuel. doi:10.1016/j.fuel.2017.12.072.
  • Zhu, J. F., N. He, and D. J. Li. 2012. The relationship between oxygen consumption rate and temperature during coal spontaneous combustion. Saf. Sci. 50 (4):842–45. doi:10.1016/j.ssci.2011.08.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.