261
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental Research on the Co-deflagration Characteristics of a Mixture of Coal Powder and Corn Starch in an Air/methane Atmosphere

, , , &
Pages 1022-1041 | Received 27 May 2021, Accepted 05 Sep 2021, Published online: 14 Sep 2021

References

  • Addai, E. K., D. Gabel, and U. Krause. 2016. Experimental investigation on the minimum ignition temperature of hybrid mixtures of dusts and gases or solvents. J. Hazard. Mater. 301:314–26. doi:10.1016/j.jhazmat.2015.09.006.
  • Cao, W., W. Li, Y. Zhang, Z. Zhou, Y. Zhao, Z. Yang, X. Liu, S. Yu, and Y. Tan. 2021. Experimental study on the explosion behaviours of premixed syngas-air mixtures in ducts. International Journal of Hydrogen Energy 46 (44):23053–66. doi:10.1016/j.ijhydene.2021.04.120.
  • Centrella, L., M. Portarapillo, G. Luciani, R. Sanchirico, and A. Di Benedetto. 2020. Synergistic behavior of flammable dust mixtures: A novel classification. J. Hazard. Mater. 397:122784. doi:10.1016/j.jhazmat.2020.122784.
  • Di Benedetto, A., and P. Russo. 2007. Thermo-kinetic modelling of dust explosions. J. Loss Prev. Process Ind. 20 (4–6):303–09. doi:10.1016/j.jlp.2007.04.001.
  • Dufaud, O., L. Perrin, and M. Traoré. 2008. Dust/vapour explosions: Hybrid behaviours? J. Loss Prev. Process Ind. 21 (4):481–84. doi:10.1016/j.jlp.2007.11.005.
  • Gan, B., B. Li, H. Jiang, D. Zhang, M. Bi, and W. Gao. 2018. Ethylene/polyethylene hybrid explosions: Part 1. Effects of ethylene concentrations on flame propagations. J. Loss Prev. Process Ind. 54:93–102. doi:10.1016/j.jlp.2018.03.005.
  • Gil, M. V., D. Casal, C. Pevida, J. J. Pis, and F. Rubiera. 2010. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour. Technol. 101 (14):5601–08. doi:10.1016/j.biortech.2010.02.008.
  • Huéscar Medina, C., B. Maccoitir, H. Sattar, D. J. F. Slatter, H. N. Phylaktou, G. E. Andrews, and B. M. Gibbs. 2015. Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1 m3 dust explosion equipment. Fuel 151:91–101. doi:10.1016/j.fuel.2015.01.009.
  • Huéscar Medina, C., H. N. Phylaktou, G. E. Andrews, and B. M. Gibbs. 2014. Explosion characteristics of pulverised torrefied and raw Norway spruce (Picea abies) and Southern pine (Pinus palustris) in comparison to bituminous coal. Biomass and Bioenergy 79:116–27. doi:10.1016/j.biombioe.2015.04.001.
  • Janovsky, B., J. Skrinsky, J. Cupak, and J. Veres. 2019. Coal dust, Lycopodium and niacin used in hybrid mixtures with methane and hydrogen in 1 m3 and 20L chambers. J. Loss Prev. Process Ind. 62:103945. doi:10.1016/j.jlp.2019.103945.
  • Ji, W., X. Yan, H. Sun, X. Yu, and J. Yu. 2018. Comparative analysis of the explosibility of several different hybrid mixtures. Powder Technol. 325:42–48. doi:10.1016/j.powtec.2017.11.022.
  • Khalili, I., O. Dufaud, M. Poupeau, N. Cuervo-Rodriguez, and L. Perrin. 2012. Ignition sensitivity of gas-vapor/dust hybrid mixtures. Powder Technol. 217:199–206. doi:10.1016/j.powtec.2011.10.027.
  • Kruczek, H., P. Rczka, and A. Tatarek. 2006. The effect of biomass on pollutant emission and burnout in co-combustion with coal. Combustion Science and Technology 178 (8):1511–39. doi:10.1080/00102200600721297.
  • Kundu, S. K., J. Zanganeh, D. Eschebach, and B. Moghtaderi. 2018. Explosion severity of methane–coal dust hybrid mixtures in a ducted spherical vessel. Powder Technol. 323:95–102. doi:10.1016/j.powtec.2017.09.041.
  • Lin, S., Z. Liu, Z. Wang, J. Qian, and Z. Gu. 2020. Flame characteristics in a coal dust explosion induced by a methane explosion in a horizontal pipeline. Combustion Science and Technology 1–14. doi:10.1080/00102202.2020.1777548.
  • Lin, S., Z. Liu, E. Zhao, J. Qian, X. Li, Q. Zhang, and M. Ali. 2019. A study on the FTIR spectra of pre- and post-explosion coal dust to evaluate the effect of functional groups on dust explosion. Process Saf. Environ. Prot. 130:48–56. doi:10.1016/j.psep.2019.07.018.
  • Liu, A., J. Chen, X. Huang, J. Lin, X. Zhang, and W. Xu. 2019. Explosion parameters and combustion kinetics of biomass dust. Bioresour. Technol. 294:122168. doi:10.1016/j.biortech.2019.122168.
  • Liu, Z., W. Li, Y. Zhang, J. Wang, W. Orndorff, and W. P. Pan. 2015. Influence of biomass on coal combustion based on thermogravimetry and Fourier transform infrared spectroscopy. J. Therm. Anal. Calorim. 122 (3):1289–98. doi:10.1007/s10973-015-4841-4.
  • Luo, R., and Q. Zhou. 2017. Combustion kinetic behaviour of different ash contents coals co-firing with biomass and the interaction analysis. J. Therm. Anal. Calorim. 128 (1):567–80. doi:10.1007/s10973-016-5867-y.
  • Mohammed Redha, A., A. Lau, M. Holuszko, A. Vakil, and S. Sokhansanj. 2021. CFD Investigation of pelletization effect on co-firing coal with wheat straw. Can. J. Chem. Eng. doi:10.1002/cjce.24106.
  • Saeed, M. A., D. J. F. Slatter, G. E. Andrews, H. N. Phylaktou, and B. M. Gibbs. 2016. Combustion of pulverized biomass crop residues and their explosion characteristics. Combustion Science and Technology 188 (11–12):2200–16. doi:10.1080/00102202.2016.1212604.
  • Song, S., Y. Cheng, X. Meng, H. Ma, H. Dai, J. Kan, and Z. Shen. 2019. Hybrid CH4/coal dust explosions in a 20-L spherical vessel. Process Saf. Environ. Prot. 122:281–87. doi:10.1016/j.psep.2018.12.023.
  • Stover, L., B. Piriou, C. Caillol, P. Higelin, C. Proust, X. Rouau, and G. Vaïtilingom. 2019. Direct use of biomass powder in internal combustion engines. Sustainable Energy & Fuels 3 (10):2763–70. doi:10.1039/c9se00293f.
  • Su, J., Y. Cheng, S. Song, H. Ma, W. Wang, Y. Wang, and S. Zhang. 2019. Explosion characteristics and influential factors of coal dust/sodium chlorate mixture on basis of an explosion accident in China. Combustion Science and Technology 193 (8):1313–25. doi:10.1080/00102202.2019.1689965.
  • Wang, J., Y. Zhang, H. Su, J. Chen, B. Liu, and Y. Zhang. 2019. Explosion characteristics and flame propagation behaviour of mixed dust cloud of coal dust and oil shale dust. Energies 12 (20):12203807. doi:10.3390/en12203807.
  • Wang, X., Z. Wang, L. Ni, M. Zhu, and C. Liu. 2020. Explosion characteristics of aluminum powder in different mixed gas environments. Powder Technol. 369:53–71. doi:10.1016/j.powtec.2020.04.056.
  • Wang, Z., K. Wan, J. Xia, Y. He, Y. Liu, and J. Liu. 2015. Pyrolysis characteristics of coal, biomass, and coal–Biomass blends under high heating rate conditions: Effects of particle diameter, fuel type, and mixing conditions. Energy & Fuels 29 (8):5036–46. doi:10.1021/acs.energyfuels.5b00646.
  • Wu, X., S. Xu, A. Pang, W. Cao, D. Liu, X. Zhu, F. Xu, and X. Wang. 2020. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials. Def. Technol. 17 (4):1262–68. doi:10.1016/j.dt.2020.06.011.
  • Xiao, Q., B. Liu, X. Ma, J. Wang, X. Meng, and B. Guo. 2019. An experimental investigation on the ignition sensitivity and flame propagation behaviour of mixed oil shale-coal dust. Combustion Science and Technology 193 (8):1359–77. doi:10.1080/00102202.2019.1695606.
  • Zhang, Q., X. Qian, Y. Chen, and M. Yuan. 2020a. Deflagration shock wave dynamics of DME/LPG blended clean fuel under the coupling effect of initial pressure and equivalence ratio in elongated closed space. J. Cleaner Prod. 250:119572. doi:10.1016/j.jclepro.2019.119572.
  • Zhang, Y., W. Cao, C. M. Shu, M. Zhao, C. Yu, Z. Xie, J. Liang, Z. Song, and X. Cao. 2020b. Dynamic hazard evaluation of explosion severity for premixed hydrogen–air mixtures in a spherical pressure vessel. Fuel 261:116433. doi:10.1016/j.fuel.2019.116433.
  • Zhao, P., X. Tan, M. Schmidt, A. Wei, W. Huang, X. Qian, and D. Wu. 2020a. Minimum explosion concentration of coal dusts in air with small amount of CH4/H2/CO under 10-kJ ignition energy conditions. Fuel 260:116401. doi:10.1016/j.fuel.2019.116401.
  • Zhao, Q., X. Chen, H. Dai, C. Huang, J. Liu, S. He, B. Yuan, P. Yang, H. Zhu, G. Liang, et al. 2020b. Inhibition of diammonium phosphate on the wheat dust explosion. Powder Technol. 367:751–61. doi:10.1016/j.powtec.2020.04.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.