221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Theoretical Study on Cool Flame Oxidation as an Effective Way for Fuel Reforming: Emphasis on Ignition Characteristics and Chemical Analysis

, , ORCID Icon, , &
Pages 1042-1058 | Received 27 Feb 2021, Accepted 05 Sep 2021, Published online: 15 Sep 2021

References

  • Alger, T., and B. Mangold. 2009. Dedicated EGR: A new concept in high efficiency engine. SAE paper. 2009-01-0694.
  • Alger, T., B. Mangold, C. Roberts, and J. Gingrich. 2012. The interaction of fuel anti-knock index and cooled EGR on engine performance and efficiency. SAE paper. 2012-01-1149.
  • Badra, J. A., and A. R. Masri. 2012. Catalytic combustion of selected hydrocarbon fuels on platinum: Reactivity and hetero-homogeneous interactions. Combust. Flame. 159 (2):17–31. doi:10.1016/j.combustflame.2011.08.026.
  • Brookshear, D. W., J. A. Pihl, and J. P. Szybist. 2017. Catalytic steam and partial oxidation reforming of liquid fuels for application in improving the efficiency of internal combustion engines. Energ. Fuel. doi:10.1021/acs.energyfuels.7b02576.
  • Chein, R., Y. C. Chen, and J. N. Chung. 2013. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production. Appl. Energy. 102:1022–34. doi:10.1016/j.apenergy.2012.06.010.
  • Cui, Y., C. Geng, H. F. Liu, Z. Q. Zheng, Q. L. Wang, and M. F. Yao. 2021. Investigations on the effects of low temperature reforming of n-heptane/ n-butanol blends on the flame development progress and combustion chemical kinetics. Fuel 290:120001. doi:10.1016/j.fuel.2020.120001.
  • Geng, C., H. F. Liu, Y. Q. Cui, Z. Yang, X. H. Fang, L. Feng, and M. F. Yao. 2019. Study on single-fuel reactivity controlled compression ignition combustion through low temperature reforming. Combust. Flame. 199:429–40. doi:10.1016/j.combustflame.2018.10.040.
  • Geng, C., H. F. Liu, X. W. Ran, and M. F. Yao. 2018. The impact of low temperature reforming (LTR) products of fuel-rich n-heptane on compression ignition engine combustion. Fuel 229:11–21. doi:10.1016/j.fuel.2018.04.063.
  • Hariharana, D., R. Yang, Y. Zhou, B. Gainey, S. Mamalis, and R. E. Smith. 2019. Catalytic partial oxidation reformation of diesel, gasoline, and natural gas for use in low temperature combustion engines. Fuel 2 (46):295–307. doi:10.1016/j.fuel.2019.02.003.
  • He, Z. Y., L. Zhu, Z. Xu, O. Kaario, A. Li, and Z. Huang. 2017. Effects of ethanol enrichment on in-cylinder thermochemical fuel reforming (TFR) spark ignition natural gas engine. Fuel 197:334–42. doi:10.1016/j.fuel.2017.02.053.
  • Kaltschmitt, T., C. Diehm, and O. Deutschmann. 2012. Catalytic partial oxidation of isooctane to hydrogen on rhodium catalysts: Effect of tail-gas recycling. Ind. Eng. Chem. Res. 51 (22):7536–46. doi:10.1021/ie201712d.
  • Kang, I., J. Bae, S. Yoon, and Y. Yoo. 2007. Performance improvement of diesel autothermal reformer by applying ultrasonic injector for effective fuel delivery. J. Power. Sources. 172 (2):845–52. doi:10.1016/j.jpowsour.2007.05.033.
  • Kong, S. C., C. D. Marriot, R. D. Reitz, and M. Christensen 2001. Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD. SAE Paper. 2001-01-1026.
  • Kopasz, J. P., D. Applegate, L. Miller, H. K. Liao, and S. Ahmed. 2005. Unraveling the maze: Understanding of diesel reforming through the use of simplified fuel blends. Int. J. Hydrogen. Energ. 30 (11):1243–50. doi:10.1016/j.ijhydene.2005.02.012.
  • Mehl, M., W. J. Pitz, C. K. Westbrook, and H. J. Curran. 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. P. Combust. Inst. 33 (1):193–200. doi:10.1016/j.proci.2010.05.027.
  • Nguyen, D. K., L. Sileghem, and S. Verhelst. 2019. Exploring the potential of reformed-exhaust gas recirculation (R-EGR) for increased efficiency of methanol fueled SI engines. Fuel 236:778–91. doi:10.1016/j.fuel.2018.09.073.
  • Shao, Y., Q. Sun, A. Li, Z. He, Z. Xu, Y. Qian, X. Lu, Z. Huang, and L. Zhu. 2019. Effects of natural gas, ethanol, and methanol enrichment on the performance of in-cylinder thermochemical fuel reforming (TFR) sparkignition natural gas engine. Appl. Therm. Eng. 159:113913. doi:10.1016/j.applthermaleng.2019.113913.
  • Tartakovskya, L., and M. Sheintuch. 2018. Fuel reforming in internal combustion engines. Prog. Energ. Combust. 67:88–114.
  • Wang, Y., L. Liu, and M. F. Yao. 2021. Experimental and numerical study on the impact of low-temperature reforming products of BD60 on engine combustion and emission characteristics. Fuel 288:119621. doi:10.1016/j.fuel.2020.119621.
  • Wang, Y., L. X. Wei, and M. F. Yao. 2016. A theoretical investigation of the effects of the low-temperature reforming products on the combustion of n-heptane in an HCCI engine and a constant volume vessel. Appl. Energy. 181:132–39. doi:10.1016/j.apenergy.2016.08.066.
  • Wang, Z. D., Z. K. Li, D. Moshammer, M. Popolan-Vaidade, V. Shankar, B. Shankar, A. Lucassen, A. C. Hemkeng, and C. Taatjes. 2016. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes. Combust. Flame. 164:386–96. doi:10.1016/j.combustflame.2015.11.035.
  • Wang, Z. D., D. M. Popolan-Vaida, B. J. Chen, K. Moshammer, S. Y. Mohamed, H. Wang, and S. Sioud. 2017. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. P. Natl. Acad. Sci. USA. 114 (50):13102–07. doi:10.1073/pnas.1707564114.
  • Xu, Z., L. Zhu, Z. Y. He, A. Li, Y. Shao, and Z. Huang. 2017. Performance optimization of in-cylinder thermochemical fuel reforming (TFR) with compression ratio in an SI natural gas engine. Fuel 203:162–70. doi:10.1016/j.fuel.2017.04.109.
  • Yang, J. R., and S. C. Wong. 2003. On the suppression of negative temperature coefficient (NTC) in autoignition of n-heptane droplets. Combust Flame 132 (3):475–91. doi:10.1016/S0010-2180(02)00492-3.
  • Yao, C. D., X. C. Li, C. Tang, R. Z. Zhang, and Y. Wu. 2012. Combustion characteristic of methanol dissociated gas engine through Cu/Pd-based catalysts. Trans. CSICE. 30:30–078.
  • Yao, M. F., Z. L. Zheng, and H. F. Liu. 2009. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. Energy. Combust. 35 (5):398–437. doi:10.1016/j.pecs.2009.05.001.
  • Yu, R. G., J. Liu, and B. Ma. 2020. The dependence of NTC behavior on the equivalence ratio and nitrogen fraction in cool flame region. Fuel 271:117623. doi:10.1016/j.fuel.2020.117623.
  • Zhu, L., Z. Y. He, Z. Xu, X. Lu, J. Fang, W. Zhang, and Z. Huang. 2017. In-cylinder thermochemical fuel reforming (TFR) in a spark-ignition natural gas engine. P. Combust. Inst. 36 (3):3487–97. doi:10.1016/j.proci.2016.07.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.