478
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical Investigation on Performance of Axisymmetric Variable Geometry Scramjet Combustor Equipped with Strut Flame Holder

, , , &
Pages 1059-1083 | Received 27 May 2021, Accepted 07 Sep 2021, Published online: 08 Oct 2021

References

  • An, B., M. B. Sun, Z. G. Wang, and J. Chen. 2020. Flame stabilization enhancement in a strut-based supersonic combustor by shock wave generators. Aerospace Science and Technology 105942:1270–9638.
  • Assis, S. M., J. Suppandipillai, and J. Kandasamy. 2019. Transverse Injection Experiments within an Axisymmetric Scramjet Combustor. International Journal of Turbo and Jet Engines 2019–22.
  • Avrashkov, V. N., E. S. Metelkina, and D. V. Meshcheryakov. 2010. Investigation of High-Speed Ramjet Engines. Combustion Explosion and Shock Waves 46 (4):400–07. doi:10.1007/s10573-010-0054-0.
  • Bouchez, M., Y. Kergaravat, D. Saucereau, O. Penanhoat, F. Patrone, and D. Scherrer 1998. Scramjet combustor design in French PREPHA program – Final status in 1998. 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.
  • Bouchez, M., V. Perillat, V. Avrashkov, and V. Kopchenov 2011. Numerical and experimental scientific investigation of combustion in a translating cowl Dual-Mode Ramjet. AIAA Paper. 2011–313.
  • Chang, J. T., J. L. Zhang, W. Bao, and D. R. Yu. 2018. Research progress on strut-equipped supersonic combustors for scramjet application. Progress in Aerospace Sciences 103:1–30. doi:10.1016/j.paerosci.2018.10.002.
  • Curran, E. T. 2001. Scramjet engines: The first forty years. Journal of Propulsion and Power 17 (6):1138–48. doi:10.2514/2.5875.
  • Dai, X. H., S. Singh, S. R. Krishnan, and K. K. Srinivasan. 2018. Numerical study of combustion characteristics and emissions of a diesel–methane dual-fuel engine for a wide range of injection timings. International Journal of Engine Research 21 (5):146808741878363.
  • Dessornes, O., and D. Scherrer. 2005. Tests of the JAPHAR dual mode ramjet engine. Aerospace Science and Technology 9 (3):211–21. doi:10.1016/j.ast.2005.01.007.
  • Eggers, T., P. Novelli, and M. Haupt 2001. Design studies of the JAPHAR experimental vehicle for dual mode ramjet demonstration. AIAA/NAL-NASDA-I5AS 10th Int. Sp. Planes Hypersonic Syst. Technol.
  • Eldrainy, Y. A., K. M. Saqr, H. S. Aly, T. M. Lazim, and M. N. M. Jaafar. 2011. Large eddy simulation and preliminary modeling of the flow downstream a variable geometry swirler for gas turbine combustors. International Communications in Heat and Mass Transfer 38 (8):1104–09. doi:10.1016/j.icheatmasstransfer.2011.05.017.
  • Falempin, F., D. Scherrer, G. Laruelle, P. Rostand, and J. Schultz 2013. French hypersonic propulsion program PREPHA - Results, lessons and perspectives. 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.
  • Falempin, F., and L. Serre. 2011. French Flight Testing Program LEA—Status in 2011. AIAA Paper 2011–200.
  • Falempin, F., E. Wendling, M. Goldfeld, and A. Starov. 2006. Experimental investigation of starting process for a variable geometry air inlet operating from Mach 2 to Mach 8. AIAA Paper 2006–4513.
  • Feng, S., J. T. Chang, C. L. Zhang, Y. Y. Wang, J. C. Ma, and W. Bao. 2017a. Experimental and numerical investigation on hysteresis characteristics and formation mechanism for a variable geometry dual-mode combustor. Aerospace Science and Technology 67:96–104. doi:10.1016/j.ast.2017.03.040.
  • Feng, S., J. T. Chang, Y. Zhang, C. Zhang, Y. Wang, and W. Bao. 2017b. Numerical studies for performance improvement of a variable geometry dual mode combustor by optimizing deflection angle. Aerospace Science and Technology 2017:S1270963816312822.
  • Gerlinger, P., P. Stoll, M. Kindler, F. Schneider, and M. Aigner. 2008. Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity. Aerospace Science & Technology 12 (2):159–68. doi:10.1016/j.ast.2007.04.003.
  • Gounko, Y. P., and V. V. Shumskiy. 2014. Characteristics of dual-combustion ramjet. Thermophysics and Aeromechanics 21 (4):499–508. doi:10.1134/S0869864314040106.
  • Hu, J., B. Wen, and J. T. Chang. 2015. Flame transition in Dual-Mode scramjet combustor with oxygen piloted ignition. Journal of Propulsion & Power 30 (4):1103–07. doi:10.2514/1.B35239.
  • Huang, W. 2018. Mixing enhancement strategies and their mechanisms in supersonic flows: A brief review. Acta Astronaut. 145:492–500. doi:10.1016/j.actaastro.2018.02.022.
  • Huang, W., W. D. Liu, S. B. Li, Z. X. Xia, J. Liu, and Z. G. Wang. 2012. Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows. Acta Astronaut. 73:1–9. doi:10.1016/j.actaastro.2011.12.003.
  • Hyde, E. W., G. B. Goodwin, R. F. Johnson, and T. Lee. 2021. Ethylene combustion in an axisymmetric Mach 4.5 cavity.AIAA Paper (2021–1467).
  • Jiang, Y., M. B. Gerdroodbary, M. Sheikholeslami, H. Babazadeh, Z. Li, R. Moradi, and Z. Li. 2020. Influence of upstream strut on hydrogen fuel distribution inside the supersonic combustion chamber. Int. J. Hydrogen Energy 45 (41):22032–40. doi:10.1016/j.ijhydene.2020.06.026.
  • Karaca, M., S. Zhao, I. Fedioun, and N. Lardjane. 2019. Implicit large eddy simulation of vitiation effects in supersonic air/H2 combustion. Aerospace Science and Technology 89-99:1270–9638.
  • Kumar, P. K. E., and D. P. Mishra. 2012. Numerical investigation of the flow and flame structure in an axisymmetric trapped vortex combustor. Fuel 102:78–84. doi:10.1016/j.fuel.2012.06.056.
  • Kumaran, K., and V. Babu. 2009. Mixing and combustion characteristics of kerosene in a model supersonic combustor. Journal of Propulsion & Power 25 (3):583–92. doi:10.2514/1.40140.
  • Li, D. P., Y. Pan, J. P. Wu, W. D. Liu, and Z. G. Wang. 2007. Experimental study of a variable-area propelling nozzle dual-mode ramjet. Journal of Aerospace Power 22 (4):625–31.
  • Liu, C. Y., M. B. Sun, H. B. Wang, L. C. Yang, B. An, and Y. Pan. 2020. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor. Aerospace Science and Technology 106186:1270–9638.
  • Liu, Q., D. Baccarella, and T. Lee. 2019. combustion stabilization in an axisymmetric scramjet in Mach 4.5 Flows. AIAA Scitech 2019 Forum.
  • Liu, Q., D. Baccarella, B. Mcgann, and T. Lee. 2019. Cavity-Enhanced combustion stability in an axisymmetric scramjet model. AIAA J. 57 (9):3898–909. doi:10.2514/1.J058204.
  • Liu, X., S. Lei, P. Liu, and G. He 2016. Investigation of a variable geometry 2D inlet for combined cycle engine. 52nd AIAA/SAE/ASEE Joint Propulsion Conference,Salt Lake City, UT.
  • Manna, P., and D. Chakraborty. 2005. Numerical investigation of transverse sonic injection in a non-reacting supersonic combustor. Proc Inst Mech Eng G J Aerosp Eng 219 (3):205–15. doi:10.1243/095441005X30261.
  • Meng, Y., H. Gu, and X. Zhang. 2019. Experimental study of kerosene ignition and flame stabilization in a supersonic combustor. International Journal of Turbo & Jet-Engines. doi:10.1515/tjj-2019-0026.
  • Meshcheryakov, E. A., and V. V. Yashina. 2015. Thermodynamic analysis of dual-mode scramjet combustor operation. TsAGI Science Journal 46 (5):465–83. doi:10.1615/TsAGISciJ.v46.i5.40.
  • Ou, M., L. Yan, W. Huang, S. B. Li, and L. Q. Li. 2018. Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows. Int J Heat Mass Transf 126 (PT.A):10–31. doi:10.1016/j.ijheatmasstransfer.2018.05.013.
  • Rao, M. R., G. Rao, B. Charyulu, and H. Singh. 2020. Numerical studies and validation of combustor and annular isolator interactions of hydrocarbon based axisymmetric dual combustion ramjet. Aerospace Science and Technology 106 (6):106185. doi:10.1016/j.ast.2020.106185.
  • Relangi, N., A. Ingenito, and S. Jeyakumar. 2021. The implication of injection locations in an axisymmetric cavity-based scramjet combustor. Energies 14 (9):2626. doi:10.3390/en14092626.
  • Serre, L., and F. Falempin. 2003. Promethee-The French military hypersonic propulsion program—Status in 2003. AIAA Paper 2003–6950.
  • Sunami, T., A. Murakami, K. Kudo, M. Kodera, and M. Nishioka 2002. Mixing and combustion control strategies for efficient scramjet operation in wide range of flight Mach number. Aiaa/aaaf International Space Planes & Hypersonic Systems & Technologies Conference, Orleans, France.
  • Tian, Y., J. L. Le, S. Yang, and F. Y. Zhong. 2020. Investigation of combustion characteristics in a kerosene-Fueled supersonic combustor with air throttling. AIAA J. 58 (1):1–10. doi:10.2514/1.J059653.
  • Tian, Y., B. Xiao, S. Zhang, and J. Xing. 2015. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine. Aerospace Science and Technology 46 (OCT.–NOV):451–58. doi:10.1016/j.ast.2015.09.002.
  • Wang, H., Z. Wang, M. Sun, and Q. Ning. 2013. Flame Characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder. Proceedings of the Combustion Institute 34 (2):2073–82. doi:10.1016/j.proci.2012.06.049.
  • Wang, Y. Y., K. L. Cheng, J. F. Tang, X. Y. Liu, and W. Bao. 2020. Analysis of the maximum flight Mach number of hydrocarbon-fueled scramjet engines under the flight cruising constraint and the combustor cooling requirement. Aerospace Science and Technology 98:105594. doi:10.1016/j.ast.2019.105594.
  • Wang, Y. Y., W. Shi, X. Wang, J. L. Zhang, G., . J. Tang, J. F. Chang, J. T. Bao, and W. Bao, W. 2021. Aerodynamic performance enhancement of a variable-geometry dual-mode combustor designed by the method of characteristics. Aerospace Science and Technology 108: 106353. doi: 10.1016/j.ast.2020.106353.
  • Wei, B., W. Ling, F. Luo, and Q. Gang 2017. Propulsion performance research and status of TRRE engine experiment. Aiaa International Space Planes & Hypersonics Technologies Conference,Xiamen, China.
  • Xiong, P. F., D. Zheng, Y. Tan, Y. Tian, and J. L. Le. 2020. Experimental study of ignition and combustion characteristics of ethylene in cavity-based supersonic combustor at low stagnation temperature and pressure. Aerospace Science and Technology 106414:1270–9638.
  • Yang, H., J. Ma, Y. J. Man, S. M. Zhu, W. H. Ling, and X. B. Cao 2017 Numerical simulation of Variable-Geometry inlet for TRRE combined cycle engine. 21st AIAA International Space Planes and Hypersonics Technologies Conference,Xiamen, China.
  • Yang, I., K. J. Lee, Y. J. Lee, and S. H. Lee. 2020. Combustion performance according to the cavity flameholder location in a supersonic combustor. Journal of the Korean Society of Propulsion Engineers 24 (5):13–20. doi:10.6108/KSPE.2020.24.5.013.
  • Yang, S., T. Hao, and H. Yue. 2008. Numerical simulation on flow field in supersonic combustor with cavity. Journal of Propulsion Technology 2008(01):12–16,22.
  • Ye, J. Y., H. L. Pan, F. Qin, Y. J. Wang, and D. Zhang. 2018a. Investigation of RBCC performance improvements based on a variable geometry ramjet combustor. Acta Astronaut. 151 (OCT):874–85. doi:10.1016/j.actaastro.2018.07.032.
  • Yung, C. N., T. G. Keith, and K. J. D. Witt. 2010. Numerical simulation of axisymmetric turbulent flow in combustors and diffusers. International Journal for Numerical Methods in Fluids 9 (2):167–83. doi:10.1002/fld.1650090204.
  • Zhang, C. L., J. T. Chang, S. Feng, W. Bao, and D. R. Yu. 2018. Investigation of performance and mode transition in a variable divergence ratio dual-mode combustor. Aerospace Science and Technology 80:496–507. doi:10.1016/j.ast.2018.07.025.
  • Zhao, W. S., J. X. Guo, J. L. Hou, and L. S. Fei. 2018. Study on Turbine-Based Dual-Combustor scramjet combined cycle engine concept. Tuijin Jishu/Journal of Propulsion Technology 39 (10):2297–302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.