207
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Theoretical Study on Heating Process of Micro-Al Particles in Laminar Flame

, , , &
Pages 1106-1123 | Received 24 Aug 2020, Accepted 19 Sep 2021, Published online: 27 Sep 2021

References

  • ALCHAGIROV, B. B., A. G. MOZGOVOI, and A. M. KHATSUKOV. 2004. The density of molten indium at temperatures up to 600 K. High Temp. 42 (6):1003–05. doi:10.1007/s10740-005-0024-5.
  • ARURAULT, L. 2008. Pilling Bedworth ratio of thick anodic aluminium porous films prepared at high voltages in H2SO4 based electrolyte. Trans. IMF 86 (1):51–54. doi:10.1179/174591908X264365.
  • BADIOLA, C., R. J. Gill, and E. L. DREIZIN. 2011. Combustion characteristics of micron-sized aluminum particles in oxygenated environments. Combust. Flame 158 (10):2064–70. doi:10.1016/j.combustflame.2011.03.007.
  • Basin, A. S., and A. N. SOLOV’EV. 1967. Investigation of the density of liquid lead, cesium, and gallium by the gamma-method. J. Appl. Mech. Tech. Phys. 8 (6):57–59. doi:10.1007/BF00914465.
  • BOHDANSKY, J. 1968. Surface tension and density of the liquid earth alkaline metals Mg, Ca, Sr, Ba. J. Inorg. Nucl. Chem. 30 (9):2331–37. doi:10.1016/0022-1902(68)80241-6.
  • Chandrasekhar, S. 1960. Radiative transfer. New York Dover 17 (9):237–66.
  • DREIZIN, E. L. 2009. Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35 (2):141–67. doi:10.1016/j.pecs.2008.09.001.
  • ERMOLINE, A. 2018. Thermal theory of aluminum particle ignition in continuum, free-molecular, and transition heat transfer regimes. J. Appl. Phys. 124 (5):054301. doi:10.1063/1.5039691.
  • FENG, Y., Z. XIA, L. Huang, and L. Ma. 2018. Ignition and combustion of a single aluminum particle in hot gas flow. Combust. Flame 19635-44:35–44.
  • Friedman, R., and A. MAČEK. 1963. Combustion studies of single aluminum particles. Symp. Combust. 9 (1):703–12. doi:10.1016/S0082-0784(63)80078-8.
  • Gill, R. O. B. E. R. T. J., and C. B. E. L. 2010. Combustion times and emission profiles of micron-sized aluminum particles burning in different environments. Combust. Flame :2015–2023.
  • GLOTOV, O. G., and V. A. Zhukov. 2008. The evolution of 100-µm aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. II. Results. Combust. Explos. Shock Waves 44 (6):671–80. doi:10.1007/s10573-008-0101-2.
  • Hartman, K. O. (1971) Ignition and combustion of aluminum particles in propellant flame gases. In Proceedings of 8th JANAF Combustion Meeting, vol. 1, 1971, pp. 1–24.
  • HOSSEINI, S. M., M. M. PAPARI, F. F. NOBANDEGANI, and J. MOGHADASI. 2012. Performance assessment of new perturbed hard-sphere equation of state for molten metals and ionic liquids: Application to pure and binary mixtures. J. Non Cryst. Solids 358 (15):1753–58. doi:10.1016/j.jnoncrysol.2012.05.014.
  • Incropera, F. P., and D. P. Dewitt. 2007. Fundamental of Heat and Mass Transfer. USA: John Wiley & Sons, Inc.
  • J, L. 1990. Plasticity Theory. New York: Macmillan Publishing Company.
  • JIANGUO., L. 2004. The Mechanics of Pressure Vessel Design and Standard Applications. Beijing: ChinaMachine Press.
  • Jr, R. P. W., and F. A. Williams. 1971. Experimental study of the combustion of single aluminum particles in O 2 /Ar. Symp. Combust. 13 (1):833–45. doi:10.1016/S0082-0784(71)80085-1.
  • Karasev, V. V., A. A. ONISCHUK, O. G. GLOTOV, A. M. BAKLANOV, A. G. Maryasov, V. E. ZARKO, V. N. PANFILOV, A. I. LEVYKIN, and K. K. SABELFELD. 2004. Formation of charged aggregates of Al 2 O 3 nanoparticles by combustion of aluminum droplets in air. Combust. Flame 138 (1):40–54. doi:10.1016/j.combustflame.2004.04.001.
  • LEVITAS, V. I., B. W. ASAY, S. F. Son, and M. Pantoya. 2007a. Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal. J. Appl. Phys. 101 (8):216–40. doi:10.1063/1.2720182.
  • LEVITAS, V. I., B. W. ASAY, S. F. Son, and M. Pantoya. 2007b. Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal. J. Appl. Phys. 101 (8):216–40.
  • LEVITAS, V. I., M. L. Pantoya, and B. DIKICI. 2008. Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters. Appl. Phys. Lett. 92 (1):064903. doi:10.1063/1.2824392.
  • LEVITAS, V. I., M. L. Pantoya, and S. Dean. 2014. Melt dispersion mechanism for fast reaction of aluminum nano- and micron-scale particles: Flame propagation and SEM studies. Combust. Flame 161 (6):1668–77. doi:10.1016/j.combustflame.2013.11.021.
  • LIU, Z. 1993. DERIVATION OF CALCULATION FORMULA OF FLAME BLACKNESS. Energy for Metall. Ind. 12(2): 22–24.
  • MOHAN, S., L. FURET, and E. L. DREIZIN. 2010. Aluminum particle ignition in different oxidizing environments. Combust. Flame 157 (7):1356–63. doi:10.1016/j.combustflame.2009.11.010.
  • MOHAN, S., M. A. Trunov, and E. L. DREIZIN. 2008. Heating and Ignition of Metal Particles in the Transition Heat Transfer Regime. J. Heat Transfer 130 (10). doi:10.1115/1.2945881.
  • Munro, R. G. 2004. Analytical Representations of Elastic Moduli Data With Simultaneous Dependence on Temperature and Porosity. J. Res. Natl. Inst. Stand. Technol. 109 (5):497–503. doi:10.6028/jres.109.036.
  • OHKURA, Y., P. M. RAO, and X. ZHENG. 2011. Flash ignition of Al nanoparticles: Mechanism and applications. Combust. Flame 158 (12):2544–48. doi:10.1016/j.combustflame.2011.05.012.
  • Olsen, S. E., and M. W. BECKSTEAD. 2011. Burn time measurements of single aluminum particles in steam and CO2 mixtures. J. Propul. Power 12 (4):662–71. doi:10.2514/3.24087.
  • Park, K., D. Lee, A. RAI, D. MUKHERJEE, and M. R. Zachariah. 2005. Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109 (15):7290–99. doi:10.1021/jp048041v.
  • Parr, T., and C. J. D. H. 2003. Evaluation of advanced fuels for underwater propulsion. 39thJANNAF Combust. Subcommittee Meet.
  • RAI, A., K. Park, L. ZHOU, and M. R. Zachariah. 2006. Understanding the mechanism of aluminium nanoparticle oxidation. Combust. Theory Modelling 10 (5):843–59. doi:10.1080/13647830600800686.
  • Shackelford, J. F., and R. H. D. 2008. Ceramic and Glass Materials: Structure, Properties and Processing. USA: Springer Science+Business Media.
  • SHAO, W., S. Chen, Q. I. Ping, L. I. Da, H. ZHU, and Y. ZHANG. 2006. Investigation on Three Line Expansion Coefficients of α-Al_2O_3. J. Qingdao Univ.19(1):35–38.
  • SIEGEL, R., and H. E. J. R. 2010. Thermal radiation heat transfer. Washingt on D C: Hemisphere Publishing Corporation.
  • SIPPEL, T. R., S. F. Son, and L. J. GROVEN. 2014. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust. Flame 161 (1):311–21. doi:10.1016/j.combustflame.2013.08.009.
  • SIPPEL, T. R., S. F. Son, L. J. GROVEN, S. ZHANG, and E. L. DREIZIN. 2015. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust. Flame 162 (3):846–54. doi:10.1016/j.combustflame.2014.08.013.
  • Stone, J. P., C. T. Ewing, J. R. SPANN, E. W. STEINKULLER, and R. R. Miller. 1966. High Temperature Specific Volumes of Liquid Sodium, Potassium, and Cesium. J. Chem. Eng. Data 11 (3):320–22. doi:10.1021/je60030a008.
  • SUNDARAM, D. S., P. Puri, and V. YANG. 2016. A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combust. Flame 169:94–109.
  • Turns, S. R., and S. C. W. E. 1987. Combustion of Aluminum-Based Slurry Agglomerates. Combust. Sci. Technol. 54:299-318.
  • Vargaftik, N. B., V. A. ALEKSEEV, V. F. KOZHEVNIKOV, Y. F. RYZHKOV, and V. G. STEPANOV. 1978. Equation of state of the liquid alkali metals. I. J. Eng. Phys. 35 (5):1361–66. doi:10.1007/BF00859691.
  • YETTER, R. A., G. A. RISHA, and S. F. Son. 2009. Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32 (2):1819–38. doi:10.1016/j.proci.2008.08.013.
  • YI, C., D. R. Guildenbecher, K. N. G. HOFFMEISTER, M. A. Cooper, H. L. STAUFFACHER, M. S. Oliver, and E. B. Washburn. 2017. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry. Combust. Flame 182:225–237.
  • Yuan, J. I. F. E. I., and J. L. Y. Z. 2019. Aluminum agglomeration of AP/HTPB composite propellant. Acta Astronaut. 156:14–22.
  • ZHENG, G. P., and L. I. RUI-FENG. 2008. Measuring the expansion coefficient of metal using single slit diffraction. Phys. Exp. 28(9):36–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.